Skip to content

Documentation for Parameters Estimation

Least Squares Methods for parameter estimation.

EstimatorError

Bases: Exception

Generic Python-exception-derived object raised by estimator functions.

General purpose exception class, derived from Python's ValueError class, programmatically raised in estimators functions when a Estimator-related condition would prevent further correct execution of the function.

Parameters:

Name Type Description Default
None
required
Source code in sysidentpy\parameter_estimation\estimators.py
class EstimatorError(Exception):
    """Generic Python-exception-derived object raised by estimator functions.

    General purpose exception class, derived from Python's ValueError
    class, programmatically raised in estimators functions when a Estimator-related
    condition would prevent further correct execution of the function.

    Parameters
    ----------
    None

    """

Estimators

Ordinary Least Squares for linear parameter estimation.

Source code in sysidentpy\parameter_estimation\estimators.py
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
class Estimators:
    """Ordinary Least Squares for linear parameter estimation."""

    def __init__(
        self,
        max_lag=1,
        lam=0.98,
        delta=0.01,
        offset_covariance=0.2,
        mu=0.01,
        eps=np.finfo(np.float64).eps,
        alpha=np.finfo(np.float64).eps,
        gama=0.2,
        weight=0.02,
        basis_function=None,
    ):
        self.eps = eps
        self.alpha = alpha
        self.mu = mu
        self.offset_covariance = offset_covariance
        self.max_lag = max_lag
        self.lam = lam
        self.delta = delta
        self.gama = gama
        self.weight = weight  # <0  e <1
        self.xi = None
        self.theta_evolution = None
        self.basis_function = basis_function
        self._validate_params()

    def _validate_params(self):
        """Validate input params."""
        attributes = {
            "max_lag": self.max_lag,
            "lam": self.lam,
            "delta": self.delta,
            "offset_covariance": self.offset_covariance,
            "mu": self.mu,
            "eps": self.eps,
            "alpha": self.alpha,
            "gama": self.gama,
            "weight": self.weight,
        }
        for attribute, value in attributes.items():
            if not isinstance(value, (np.integer, int, float)):
                raise ValueError(
                    f"{attribute} must be int or float (positive).Got {type(attribute)}"
                )

            if attribute in ["lam", "weight", "offset_covariance"]:
                if value > 1 or value < 0:
                    raise ValueError(
                        f"{attribute} must lies on [0 1] range. Got {value}"
                    )

            if value < 0:
                raise ValueError(
                    f"{attribute} must be positive. Got {value}"
                    "Check the documentation for allowed values"
                )

    def _check_linear_dependence_rows(self, psi):
        if np.linalg.matrix_rank(psi) != psi.shape[1]:
            warnings.warn(
                "Psi matrix might have linearly dependent rows."
                "Be careful and check your data",
                stacklevel=2,
            )

    def least_squares(self, psi: np.ndarray, y: np.ndarray) -> np.ndarray:
        """Estimate the model parameters using Least Squares method.

        Parameters
        ----------
        psi : ndarray of floats
            The information matrix of the model.
        y : array-like of shape = y_training
            The data used to training the model.

        Returns
        -------
        theta : array-like of shape = number_of_model_elements
            The estimated parameters of the model.

        References
        ----------
        - Manuscript: Sorenson, H. W. (1970). Least-squares estimation:
           from Gauss to Kalman. IEEE spectrum, 7(7), 63-68.
           http://pzs.dstu.dp.ua/DataMining/mls/bibl/Gauss2Kalman.pdf
        - Book (Portuguese): Aguirre, L. A. (2007). Introdução identificação
           de sistemas: técnicas lineares e não-lineares aplicadas a sistemas
           reais. Editora da UFMG. 3a edição.
        - Manuscript: Markovsky, I., & Van Huffel, S. (2007).
           Overview of total least-squares methods.
           Signal processing, 87(10), 2283-2302.
           https://eprints.soton.ac.uk/263855/1/tls_overview.pdf
        - Wikipedia entry on Least Squares
           https://en.wikipedia.org/wiki/Least_squares

        """
        self._check_linear_dependence_rows(psi)

        y = y[self.max_lag :, 0].reshape(-1, 1)
        theta = np.linalg.lstsq(psi, y, rcond=None)[0]
        return theta

    def ridge_regression_classic(self, psi: np.ndarray, y: np.ndarray) -> np.ndarray:
        """Estimate the model parameters using ridge regression.

           Based on the least_squares module and uses the same data format but you need
           to pass alpha in the call to FROLS.

        Parameters
        ----------
        psi : ndarray of floats
            The information matrix of the model.
        y : array-like of shape = y_training
            The data used to training the model.

        Returns
        -------
        theta : array-like of shape = number_of_model_elements
            The estimated parameters of the model.

        References
        ----------
        - Wikipedia entry on ridge regression
          https://en.wikipedia.org/wiki/Ridge_regression

        alpha multiplied by the identity matrix (np.eye) favors models (theta) that
        have small size using an L2 norm.  This prevents over fitting of the model.
        For applications where preventing overfitting is important, see, for example,
        D. J. Gauthier, E. Bollt, A. Griffith, W. A. S. Barbosa, 'Next generation
        reservoir computing,' Nat. Commun. 12, 5564 (2021).
        https://www.nature.com/articles/s41467-021-25801-2

        """
        self._check_linear_dependence_rows(psi)

        y = y[self.max_lag :, 0].reshape(-1, 1)
        theta = (
            np.linalg.pinv(psi.T @ psi + self.alpha * np.eye(psi.shape[1])) @ psi.T @ y
        )
        return theta

    def _unbiased_estimator(self, psi, y, theta, elag, max_lag, estimator):
        """Estimate the model parameters using Extended Least Squares method.

        Parameters
        ----------
        psi : ndarray of floats
            The information matrix of the model.
        X : ndarray of floats
            The input data to be used in the training process.
        y : array-like of shape = y_training
            The data used to training the model.
        biased_theta : array-like of shape = number_of_model_elements
            The estimated biased parameters of the model.

        Returns
        -------
        theta : array-like of shape = number_of_model_elements
            The estimated unbiased parameters of the model.

        References
        ----------
        - Manuscript: Sorenson, H. W. (1970). Least-squares estimation:
           from Gauss to Kalman. IEEE spectrum, 7(7), 63-68.
           http://pzs.dstu.dp.ua/DataMining/mls/bibl/Gauss2Kalman.pdf
        - Book (Portuguese): Aguirre, L. A. (2007). Introdução a identificação
           de sistemas: técnicas lineares e não-lineares aplicadas a sistemas
           reais. Editora da UFMG. 3a edição.
        - Manuscript: Markovsky, I., & Van Huffel, S. (2007).
           Overview of total least-squares methods.
           Signal processing, 87(10), 2283-2302.
            https://eprints.soton.ac.uk/263855/1/tls_overview.pdf
        - Wikipedia entry on Least Squares
           https://en.wikipedia.org/wiki/Least_squares

        """
        e = y[max_lag:, 0].reshape(-1, 1) - np.dot(psi, theta)
        im = InformationMatrix(ylag=elag)
        for _ in range(30):
            e = np.concatenate([np.zeros([max_lag, 1]), e], axis=0)

            lagged_data = im.build_output_matrix(None, e)

            e_regressors = self.basis_function.fit(
                lagged_data, max_lag, predefined_regressors=None
            )

            psi_extended = np.concatenate([psi, e_regressors], axis=1)
            unbiased_theta = getattr(self, estimator)(psi_extended, y)
            e = y[max_lag:, 0].reshape(-1, 1) - np.dot(
                psi_extended, unbiased_theta.reshape(-1, 1)
            )

        return unbiased_theta[0 : theta.shape[0], 0].reshape(-1, 1)

    def total_least_squares(self, psi: np.ndarray, y: np.ndarray) -> np.ndarray:
        """Estimate the model parameters using Total Least Squares method.

        Parameters
        ----------
        psi : ndarray of floats
            The information matrix of the model.
        y : array-like of shape = y_training
            The data used to training the model.

        Returns
        -------
        theta : array-like of shape = number_of_model_elements
            The estimated parameters of the model.

        References
        ----------
        - Manuscript: Golub, G. H., & Van Loan, C. F. (1980).
           An analysis of the total least squares problem.
           SIAM journal on numerical analysis, 17(6), 883-893.
        - Manuscript: Markovsky, I., & Van Huffel, S. (2007).
           Overview of total least-squares methods.
           Signal processing, 87(10), 2283-2302.
           https://eprints.soton.ac.uk/263855/1/tls_overview.pdf
        - Wikipedia entry on Total Least Squares
           https://en.wikipedia.org/wiki/Total_least_squares

        """
        y = y[self.max_lag :, 0].reshape(-1, 1)
        full = np.hstack((psi, y))
        n = psi.shape[1]
        _, _, v = np.linalg.svd(full, full_matrices=True)
        theta = -v.T[:n, n:] / v.T[n:, n:]
        return theta.reshape(-1, 1)

    def _initial_values(self, y, psi):
        y = y[self.max_lag :, 0].reshape(-1, 1)
        n_theta = psi.shape[1]
        n = len(psi)
        theta = np.zeros([n_theta, n])
        xi = np.zeros([n, 1])
        return y, n_theta, n, theta, xi

    def recursive_least_squares(self, psi: np.ndarray, y: np.ndarray) -> np.ndarray:
        """Estimate the model parameters using the Recursive Least Squares method.

        The implementation consider the forgetting factor.

        Parameters
        ----------
        psi : ndarray of floats
            The information matrix of the model.
        y : array-like of shape = y_training
            The data used to training the model.

        Returns
        -------
        theta : array-like of shape = number_of_model_elements
            The estimated parameters of the model.

        Notes
        -----
        A more in-depth documentation of all methods for parameters estimation
        will be available soon. For now, please refer to the mentioned
        references.

        References
        ----------
        - Book (Portuguese): Aguirre, L. A. (2007). Introdução identificação
           de sistemas: técnicas lineares e não-lineares aplicadas a sistemas
           reais. Editora da UFMG. 3a edição.

        """
        y, n_theta, n, theta, self.xi = self._initial_values(y, psi)

        p = np.eye(n_theta) / self.delta

        for i in range(2, n):
            psi_tmp = psi[i, :].reshape(-1, 1)
            k_numerator = self.lam ** (-1) * p.dot(psi_tmp)
            k_denominator = 1 + self.lam ** (-1) * psi_tmp.T.dot(p).dot(psi_tmp)
            k = np.divide(k_numerator, k_denominator)
            self.xi[i, 0] = y[i, 0] - np.dot(psi_tmp.T, theta[:, i - 1])[0]
            tmp_list = theta[:, i - 1].reshape(-1, 1) + k.dot(self.xi[i, 0])
            theta[:, i] = tmp_list.flatten()

            p1 = p.dot(psi[i, :].reshape(-1, 1)).dot(psi[i, :].reshape(-1, 1).T).dot(p)
            p2 = (
                psi[i, :].reshape(-1, 1).T.dot(p).dot(psi[i, :].reshape(-1, 1))
                + self.lam
            )

            p_numerator = p - np.divide(p1, p2)
            p = np.divide(p_numerator, self.lam)

        self.theta_evolution = theta.copy()
        return theta[:, -1].reshape(-1, 1)

    def affine_least_mean_squares(self, psi: np.ndarray, y: np.ndarray) -> np.ndarray:
        """Estimate the model parameters using the Affine Least Mean Squares.

        Parameters
        ----------
        psi : ndarray of floats
            The information matrix of the model.
        y : array-like of shape = y_training
            The data used to training the model.

        Returns
        -------
        theta : array-like of shape = number_of_model_elements
            The estimated parameters of the model.

        Notes
        -----
        A more in-depth documentation of all methods for parameters estimation
        will be available soon. For now, please refer to the mentioned
        references.

        References
        ----------
        - Book: Poularikas, A. D. (2017). Adaptive filtering: Fundamentals
           of least mean squares with MATLAB®. CRC Press.

        """
        y, n_theta, n, theta, self.xi = self._initial_values(y, psi)

        for i in range(n_theta, n):
            self.xi = y - psi.dot(theta[:, i - 1].reshape(-1, 1))
            aux = (
                self.mu
                * psi
                @ np.linalg.pinv(psi.T @ psi + self.offset_covariance * np.eye(n_theta))
            )
            tmp_list = theta[:, i - 1].reshape(-1, 1) + aux.T.dot(self.xi)
            theta[:, i] = tmp_list.flatten()

        return theta[:, -1].reshape(-1, 1)

    def least_mean_squares(self, psi: np.ndarray, y: np.ndarray) -> np.ndarray:
        """Estimate the model parameters using the Least Mean Squares filter.

        Parameters
        ----------
        psi : ndarray of floats
            The information matrix of the model.
        y : array-like of shape = y_training
            The data used to training the model.

        Returns
        -------
        theta : array-like of shape = number_of_model_elements
            The estimated parameters of the model.

        Notes
        -----
        A more in-depth documentation of all methods for parameters estimation
        will be available soon. For now, please refer to the mentioned
        references.

        References
        ----------
        - Book: Haykin, S., & Widrow, B. (Eds.). (2003). Least-mean-square
           adaptive filters (Vol. 31). John Wiley & Sons.
        - Dissertation (Portuguese): Zipf, J. G. F. (2011). Classificação,
           análise estatística e novas estratégias de algoritmos LMS de passo
           variável.
        - Wikipedia entry on Least Mean Squares
           https://en.wikipedia.org/wiki/Least_mean_squares_filter

        """
        y, n_theta, n, theta, self.xi = self._initial_values(y, psi)

        for i in range(n_theta, n):
            psi_tmp = psi[i, :].reshape(-1, 1)
            self.xi[i, 0] = y[i, 0] - np.dot(psi_tmp.T, theta[:, i - 1])[0]
            tmp_list = (
                theta[:, i - 1].reshape(-1, 1) + 2 * self.mu * self.xi[i, 0] * psi_tmp
            )
            theta[:, i] = tmp_list.flatten()

        return theta[:, -1].reshape(-1, 1)

    def least_mean_squares_sign_error(
        self, psi: np.ndarray, y: np.ndarray
    ) -> np.ndarray:
        """Parameter estimation using the Sign-Error  Least Mean Squares filter.

        The sign-error LMS algorithm uses the sign of the error vector
        to change the filter coefficients.

        Parameters
        ----------
        psi : ndarray of floats
            The information matrix of the model.
        y : array-like of shape = y_training
            The data used to training the model.

        Returns
        -------
        theta : array-like of shape = number_of_model_elements
            The estimated parameters of the model.

        Notes
        -----
        A more in-depth documentation of all methods for parameters estimation
        will be available soon. For now, please refer to the mentioned
        references.

        References
        ----------
        - Book: Hayes, M. H. (2009). Statistical digital signal processing
           and modeling. John Wiley & Sons.
        - Dissertation (Portuguese): Zipf, J. G. F. (2011). Classificação,
           análise estatística e novas estratégias de algoritmos LMS de passo
           variável.
        - Wikipedia entry on Least Mean Squares
           https://en.wikipedia.org/wiki/Least_mean_squares_filter

        """
        y, n_theta, n, theta, self.xi = self._initial_values(y, psi)

        for i in range(n_theta, n):
            psi_tmp = psi[i, :].reshape(-1, 1)
            self.xi[i, 0] = y[i, 0] - np.dot(psi_tmp.T, theta[:, i - 1])[0]
            tmp_list = (
                theta[:, i - 1].reshape(-1, 1)
                + self.mu * np.sign(self.xi[i, 0]) * psi_tmp
            )
            theta[:, i] = tmp_list.flatten()

        return theta[:, -1].reshape(-1, 1)

    def normalized_least_mean_squares(
        self, psi: np.ndarray, y: np.ndarray
    ) -> np.ndarray:
        """Parameter estimation using the Normalized Least Mean Squares filter.

        The normalization is used to avoid numerical instability when updating
        the estimated parameters.

        Parameters
        ----------
        psi : ndarray of floats
            The information matrix of the model.
        y : array-like of shape = y_training
            The data used to training the model.

        Returns
        -------
        theta : array-like of shape = number_of_model_elements
            The estimated parameters of the model.

        Notes
        -----
        A more in-depth documentation of all methods for parameters estimation
        will be available soon. For now, please refer to the mentioned
        references.

        References
        ----------
        - Book: Hayes, M. H. (2009). Statistical digital signal processing
           and modeling. John Wiley & Sons.
        - Dissertation (Portuguese): Zipf, J. G. F. (2011). Classificação,
           análise estatística e novas estratégias de algoritmos LMS de passo
           variável.
        - Wikipedia entry on Least Mean Squares
           https://en.wikipedia.org/wiki/Least_mean_squares_filter

        """
        y, n_theta, n, theta, self.xi = self._initial_values(y, psi)

        for i in range(n_theta, n):
            psi_tmp = psi[i, :].reshape(-1, 1)
            self.xi[i, 0] = y[i, 0] - np.dot(psi_tmp.T, theta[:, i - 1])[0]
            tmp_list = theta[:, i - 1].reshape(-1, 1) + 2 * self.mu * self.xi[i, 0] * (
                psi_tmp / (self.eps + np.dot(psi_tmp.T, psi_tmp))
            )
            theta[:, i] = tmp_list.flatten()

        return theta[:, -1].reshape(-1, 1)

    def least_mean_squares_normalized_sign_error(
        self, psi: np.ndarray, y: np.ndarray
    ) -> np.ndarray:
        """Parameter estimation using the Normalized Sign-Error LMS filter.

        The normalization is used to avoid numerical instability when updating
        the estimated parameters and the sign of the error vector is used to
        to change the filter coefficients.

        Parameters
        ----------
        psi : ndarray of floats
            The information matrix of the model.
        y : array-like of shape = y_training
            The data used to training the model.

        Returns
        -------
        theta : array-like of shape = number_of_model_elements
            The estimated parameters of the model.

        Notes
        -----
        A more in-depth documentation of all methods for parameters estimation
        will be available soon. For now, please refer to the mentioned
        references.

        References
        ----------
        - Book: Hayes, M. H. (2009). Statistical digital signal processing
           and modeling. John Wiley & Sons.
        - Dissertation (Portuguese): Zipf, J. G. F. (2011). Classificação,
           análise estatística e novas estratégias de algoritmos LMS de passo
           variável.
        - Wikipedia entry on Least Mean Squares
           https://en.wikipedia.org/wiki/Least_mean_squares_filter

        """
        y, n_theta, n, theta, self.xi = self._initial_values(y, psi)

        for i in range(n_theta, n):
            psi_tmp = psi[i, :].reshape(-1, 1)
            self.xi[i, 0] = y[i, 0] - np.dot(psi_tmp.T, theta[:, i - 1])[0]
            tmp_list = theta[:, i - 1].reshape(-1, 1) + 2 * self.mu * np.sign(
                self.xi[i, 0]
            ) * (psi_tmp / (self.eps + np.dot(psi_tmp.T, psi_tmp)))
            theta[:, i] = tmp_list.flatten()

        return theta[:, -1].reshape(-1, 1)

    def least_mean_squares_sign_regressor(
        self, psi: np.ndarray, y: np.ndarray
    ) -> np.ndarray:
        """Parameter estimation using the  Sign-Regressor LMS filter.

        The sign-regressor LMS algorithm uses the sign of the matrix
        information to change the filter coefficients.

        Parameters
        ----------
        psi : ndarray of floats
            The information matrix of the model.
        y : array-like of shape = y_training
            The data used to training the model.

        Returns
        -------
        theta : array-like of shape = number_of_model_elements
            The estimated parameters of the model.

        Notes
        -----
        A more in-depth documentation of all methods for parameters estimation
        will be available soon. For now, please refer to the mentioned
        references.

        References
        ----------
        - Book: Hayes, M. H. (2009). Statistical digital signal processing
           and modeling. John Wiley & Sons.
        - Dissertation (Portuguese): Zipf, J. G. F. (2011). Classificação,
           análise estatística e novas estratégias de algoritmos LMS de passo
           variável.
        - Wikipedia entry on Least Mean Squares
           https://en.wikipedia.org/wiki/Least_mean_squares_filter

        """
        y, n_theta, n, theta, self.xi = self._initial_values(y, psi)

        for i in range(n_theta, n):
            psi_tmp = psi[i, :].reshape(-1, 1)
            self.xi[i, 0] = y[i, 0] - np.dot(psi_tmp.T, theta[:, i - 1])[0]
            tmp_list = theta[:, i - 1].reshape(-1, 1) + self.mu * self.xi[
                i, 0
            ] * np.sign(psi_tmp)
            theta[:, i] = tmp_list.flatten()

        return theta[:, -1].reshape(-1, 1)

    def least_mean_squares_normalized_sign_regressor(
        self, psi: np.ndarray, y: np.ndarray
    ) -> np.ndarray:
        """Parameter estimation using the Normalized Sign-Regressor LMS filter.

        The normalization is used to avoid numerical instability when updating
        the estimated parameters and the sign of the information matrix is
        used to change the filter coefficients.

        Parameters
        ----------
        psi : ndarray of floats
            The information matrix of the model.
        y : array-like of shape = y_training
            The data used to training the model.

        Returns
        -------
        theta : array-like of shape = number_of_model_elements
            The estimated parameters of the model.

        Notes
        -----
        A more in-depth documentation of all methods for parameters estimation
        will be available soon. For now, please refer to the mentioned
        references.

        References
        ----------
        .. [1] Book: Hayes, M. H. (2009). Statistical digital signal processing
           and modeling. John Wiley & Sons.
        .. [2] Dissertation (Portuguese): Zipf, J. G. F. (2011). Classificação,
           análise estatística e novas estratégias de algoritmos LMS de passo
           variável.
        .. [3] Wikipedia entry on Least Mean Squares
           https://en.wikipedia.org/wiki/Least_mean_squares_filter

        """
        y, n_theta, n, theta, self.xi = self._initial_values(y, psi)

        for i in range(n_theta, n):
            psi_tmp = psi[i, :].reshape(-1, 1)
            self.xi[i, 0] = y[i, 0] - np.dot(psi_tmp.T, theta[:, i - 1])[0]
            tmp_list = theta[:, i - 1].reshape(-1, 1) + self.mu * self.xi[i, 0] * (
                np.sign(psi_tmp) / (self.eps + np.dot(psi_tmp.T, psi_tmp))
            )
            theta[:, i] = tmp_list.flatten()

        return theta[:, -1].reshape(-1, 1)

    def least_mean_squares_sign_sign(
        self, psi: np.ndarray, y: np.ndarray
    ) -> np.ndarray:
        """Parameter estimation using the  Sign-Sign LMS filter.

        The sign-regressor LMS algorithm uses both the sign of the matrix
        information and the sign of the error vector to change the filter
        coefficients.

        Parameters
        ----------
        psi : ndarray of floats
            The information matrix of the model.
        y : array-like of shape = y_training
            The data used to training the model.

        Returns
        -------
        theta : array-like of shape = number_of_model_elements
            The estimated parameters of the model.

        Notes
        -----
        A more in-depth documentation of all methods for parameters estimation
        will be available soon. For now, please refer to the mentioned
        references.

        References
        ----------
        - Book: Hayes, M. H. (2009). Statistical digital signal processing
           and modeling. John Wiley & Sons.
        - Dissertation (Portuguese): Zipf, J. G. F. (2011). Classificação,
           análise estatística e novas estratégias de algoritmos LMS de passo
           variável.
        - Wikipedia entry on Least Mean Squares
           https://en.wikipedia.org/wiki/Least_mean_squares_filter

        """
        y, n_theta, n, theta, self.xi = self._initial_values(y, psi)

        for i in range(n_theta, n):
            psi_tmp = psi[i, :].reshape(-1, 1)
            self.xi[i, 0] = y[i, 0] - np.dot(psi_tmp.T, theta[:, i - 1])[0]
            tmp_list = theta[:, i - 1].reshape(-1, 1) + 2 * self.mu * np.sign(
                self.xi[i, 0]
            ) * np.sign(psi_tmp)
            theta[:, i] = tmp_list.flatten()

        return theta[:, -1].reshape(-1, 1)

    def least_mean_squares_normalized_sign_sign(
        self, psi: np.ndarray, y: np.ndarray
    ) -> np.ndarray:
        """Parameter estimation using the Normalized Sign-Sign LMS filter.

        The normalization is used to avoid numerical instability when updating
        the estimated parameters and both the sign of the information matrix
        and the sign of the error vector are used to change the filter
        coefficients.

        Parameters
        ----------
        psi : ndarray of floats
            The information matrix of the model.
        y : array-like of shape = y_training
            The data used to training the model.

        Returns
        -------
        theta : array-like of shape = number_of_model_elements
            The estimated parameters of the model.

        Notes
        -----
        A more in-depth documentation of all methods for parameters estimation
        will be available soon. For now, please refer to the mentioned
        references.

        References
        ----------
        - Book: Hayes, M. H. (2009). Statistical digital signal processing
           and modeling. John Wiley & Sons.
        - Dissertation (Portuguese): Zipf, J. G. F. (2011). Classificação,
           análise estatística e novas estratégias de algoritmos LMS de passo
           variável.
        - Wikipedia entry on Least Mean Squares
           https://en.wikipedia.org/wiki/Least_mean_squares_filter

        """
        y, n_theta, n, theta, self.xi = self._initial_values(y, psi)

        for i in range(n_theta, n):
            psi_tmp = psi[i, :].reshape(-1, 1)
            self.xi[i, 0] = y[i, 0] - np.dot(psi_tmp.T, theta[:, i - 1])[0]
            tmp_list = theta[:, i - 1].reshape(-1, 1) + 2 * self.mu * np.sign(
                self.xi[i, 0]
            ) * (np.sign(psi_tmp) / (self.eps + np.dot(psi_tmp.T, psi_tmp)))
            theta[:, i] = tmp_list.flatten()

        return theta[:, -1].reshape(-1, 1)

    def least_mean_squares_normalized_leaky(
        self, psi: np.ndarray, y: np.ndarray
    ) -> np.ndarray:
        """Parameter estimation using the  Normalized Leaky LMS filter.

        When the leakage factor, gama, is set to 0 then there is no
        leakage in the estimation process.

        Parameters
        ----------
        psi : ndarray of floats
            The information matrix of the model.
        y : array-like of shape = y_training
            The data used to training the model.

        Returns
        -------
        theta : array-like of shape = number_of_model_elements
            The estimated parameters of the model.

        Notes
        -----
        A more in-depth documentation of all methods for parameters estimation
        will be available soon. For now, please refer to the mentioned
        references.

        References
        ----------
        - Book: Hayes, M. H. (2009). Statistical digital signal processing
           and modeling. John Wiley & Sons.
        - Dissertation (Portuguese): Zipf, J. G. F. (2011). Classificação,
           análise estatística e novas estratégias de algoritmos LMS de passo
           variável.
        - Wikipedia entry on Least Mean Squares
           https://en.wikipedia.org/wiki/Least_mean_squares_filter

        """
        y, n_theta, n, theta, self.xi = self._initial_values(y, psi)

        for i in range(n_theta, n):
            psi_tmp = psi[i, :].reshape(-1, 1)
            self.xi[i, 0] = y[i, 0] - np.dot(psi_tmp.T, theta[:, i - 1])[0]
            tmp_list = theta[:, i - 1].reshape(-1, 1) * (
                1 - self.mu * self.gama
            ) + self.mu * self.xi[i, 0] * psi_tmp / (
                self.eps + np.dot(psi_tmp.T, psi_tmp)
            )
            theta[:, i] = tmp_list.flatten()

        return theta[:, -1].reshape(-1, 1)

    def least_mean_squares_leaky(self, psi: np.ndarray, y: np.ndarray) -> np.ndarray:
        """Parameter estimation using the  Leaky LMS filter.

        When the leakage factor, gama, is set to 0 then there is no
        leakage in the estimation process.

        Parameters
        ----------
        psi : ndarray of floats
            The information matrix of the model.
        y : array-like of shape = y_training
            The data used to training the model.

        Returns
        -------
        theta : array-like of shape = number_of_model_elements
            The estimated parameters of the model.

        Notes
        -----
        A more in-depth documentation of all methods for parameters estimation
        will be available soon. For now, please refer to the mentioned
        references.

        References
        ----------
        - Book: Hayes, M. H. (2009). Statistical digital signal processing
           and modeling. John Wiley & Sons.
        - Dissertation (Portuguese): Zipf, J. G. F. (2011). Classificação,
           análise estatística e novas estratégias de algoritmos LMS de passo
           variável.
        - Wikipedia entry on Least Mean Squares
           https://en.wikipedia.org/wiki/Least_mean_squares_filter

        """
        y, n_theta, n, theta, self.xi = self._initial_values(y, psi)

        for i in range(n_theta, n):
            psi_tmp = psi[i, :].reshape(-1, 1)
            self.xi[i, 0] = y[i, 0] - np.dot(psi_tmp.T, theta[:, i - 1])[0]
            tmp_list = (
                theta[:, i - 1].reshape(-1, 1) * (1 - self.mu * self.gama)
                + self.mu * self.xi[i, 0] * psi_tmp
            )
            theta[:, i] = tmp_list.flatten()

        return theta[:, -1].reshape(-1, 1)

    def least_mean_squares_fourth(self, psi: np.ndarray, y: np.ndarray) -> np.ndarray:
        """Parameter estimation using the  LMS Fourth filter.

        When the leakage factor, gama, is set to 0 then there is no
        leakage in the estimation process.

        Parameters
        ----------
        psi : ndarray of floats
            The information matrix of the model.
        y : ndarray of floats of shape = y_training
            The data used to training the model.

        Returns
        -------
        theta : ndarray of floats of shape = number_of_model_elements
            The estimated parameters of the model.

        Notes
        -----
        A more in-depth documentation of all methods for parameters estimation
        will be available soon. For now, please refer to the mentioned
        references.

        References
        ----------
        - Book: Hayes, M. H. (2009). Statistical digital signal processing
           and modeling. John Wiley & Sons.
        - Dissertation (Portuguese): Zipf, J. G. F. (2011). Classificação,
           análise estatística e novas estratégias de algoritmos LMS de passo
           variável.
        - Manuscript:Gui, G., Mehbodniya, A., & Adachi, F. (2013).
           Least mean square/fourth algorithm with application to sparse
           channel estimation. arXiv preprint arXiv:1304.3911.
           https://arxiv.org/pdf/1304.3911.pdf
        - Manuscript: Nascimento, V. H., & Bermudez, J. C. M. (2005, March).
           When is the least-mean fourth algorithm mean-square stable?
           In Proceedings.(ICASSP'05). IEEE International Conference on
           Acoustics, Speech, and Signal Processing, 2005.
           (Vol. 4, pp. iv-341). IEEE.
           http://www.lps.usp.br/vitor/artigos/icassp05.pdf
        - Wikipedia entry on Least Mean Squares
           https://en.wikipedia.org/wiki/Least_mean_squares_filter

        """
        y, n_theta, n, theta, self.xi = self._initial_values(y, psi)

        for i in range(n_theta, n):
            psi_tmp = psi[i, :].reshape(-1, 1)
            self.xi[i, 0] = y[i, 0] - np.dot(psi_tmp.T, theta[:, i - 1])[0]
            tmp_list = (
                theta[:, i - 1].reshape(-1, 1) + self.mu * psi_tmp * self.xi[i, 0] ** 3
            )
            theta[:, i] = tmp_list.flatten()

        return theta[:, -1].reshape(-1, 1)

    def least_mean_squares_mixed_norm(
        self, psi: np.ndarray, y: np.ndarray
    ) -> np.ndarray:
        """Parameter estimation using the Mixed-norm LMS filter.

        The weight factor controls the proportions of the error norms
        and offers an extra degree of freedom within the adaptation.

        Parameters
        ----------
        psi : ndarray of floats
            The information matrix of the model.
        y : array-like of shape = y_training
            The data used to training the model.

        Returns
        -------
        theta : array-like of shape = number_of_model_elements
            The estimated parameters of the model.

        Notes
        -----
        A more in-depth documentation of all methods for parameters estimation
        will be available soon. For now, please refer to the mentioned
        references.

        References
        ----------
        - Chambers, J. A., Tanrikulu, O., & Constantinides, A. G. (1994).
           Least mean mixed-norm adaptive filtering.
           Electronics letters, 30(19), 1574-1575.
           https://ieeexplore.ieee.org/document/326382
        - Dissertation (Portuguese): Zipf, J. G. F. (2011). Classificação,
           análise estatística e novas estratégias de algoritmos LMS de passo
           variável.
        - Wikipedia entry on Least Mean Squares
           https://en.wikipedia.org/wiki/Least_mean_squares_filter

        """
        y, n_theta, n, theta, self.xi = self._initial_values(y, psi)

        for i in range(n_theta, n):
            psi_tmp = psi[i, :].reshape(-1, 1)
            self.xi[i, 0] = y[i, 0] - np.dot(psi_tmp.T, theta[:, i - 1])[0]
            tmp_list = theta[:, i - 1].reshape(-1, 1) + self.mu * psi_tmp * self.xi[
                i, 0
            ] * (self.weight + (1 - self.weight) * self.xi[i, 0] ** 2)
            theta[:, i] = tmp_list.flatten()

        return theta[:, -1].reshape(-1, 1)

    def ridge_regression(self, psi: np.ndarray, y: np.ndarray) -> np.ndarray:
        """Estimate the model parameters using SVD and Ridge Regression method.

        Parameters
        ----------
        psi : ndarray of floats
            The information matrix of the model.
        y : array-like of shape = y_training
            The data used to training the model.

        Returns
        -------
        theta : array-like of shape = number_of_model_elements
            The estimated parameters of the model.

        References
        ----------
        - Manuscript: Hoerl, A. E.; Kennard, R. W. Ridge regression:
                      applications to nonorthogonal problems. Technometrics,
                      Taylor & Francis, v. 12, n. 1, p. 69-82, 1970.

        - StackExchange: whuber. The proof of shrinking coefficients using ridge
                         regression through "spectral decomposition".
                         Cross Validated, accessed 21 September 2023,
                         https://stats.stackexchange.com/q/220324
        """
        self._check_linear_dependence_rows(psi)
        y = y[self.max_lag :, 0].reshape(-1, 1)
        try:
            U, S, Vh = np.linalg.svd(psi, full_matrices=False)
            S = np.diag(S)
            i = np.identity(len(S))
            theta = Vh.T @ np.linalg.inv(S**2 + self.alpha * i) @ S @ U.T @ y
        except EstimatorError:
            warnings.warn(
                "The SVD computation did not converge."
                "Theta values will be calculated with the classic algorithm.",
                stacklevel=2,
            )

            theta = self.ridge_regression_classic(psi, y)

        return theta

affine_least_mean_squares(psi, y)

Estimate the model parameters using the Affine Least Mean Squares.

Parameters:

Name Type Description Default
psi ndarray of floats

The information matrix of the model.

required
y array-like of shape = y_training

The data used to training the model.

required

Returns:

Name Type Description
theta array-like of shape = number_of_model_elements

The estimated parameters of the model.

Notes

A more in-depth documentation of all methods for parameters estimation will be available soon. For now, please refer to the mentioned references.

References
  • Book: Poularikas, A. D. (2017). Adaptive filtering: Fundamentals of least mean squares with MATLAB®. CRC Press.
Source code in sysidentpy\parameter_estimation\estimators.py
def affine_least_mean_squares(self, psi: np.ndarray, y: np.ndarray) -> np.ndarray:
    """Estimate the model parameters using the Affine Least Mean Squares.

    Parameters
    ----------
    psi : ndarray of floats
        The information matrix of the model.
    y : array-like of shape = y_training
        The data used to training the model.

    Returns
    -------
    theta : array-like of shape = number_of_model_elements
        The estimated parameters of the model.

    Notes
    -----
    A more in-depth documentation of all methods for parameters estimation
    will be available soon. For now, please refer to the mentioned
    references.

    References
    ----------
    - Book: Poularikas, A. D. (2017). Adaptive filtering: Fundamentals
       of least mean squares with MATLAB®. CRC Press.

    """
    y, n_theta, n, theta, self.xi = self._initial_values(y, psi)

    for i in range(n_theta, n):
        self.xi = y - psi.dot(theta[:, i - 1].reshape(-1, 1))
        aux = (
            self.mu
            * psi
            @ np.linalg.pinv(psi.T @ psi + self.offset_covariance * np.eye(n_theta))
        )
        tmp_list = theta[:, i - 1].reshape(-1, 1) + aux.T.dot(self.xi)
        theta[:, i] = tmp_list.flatten()

    return theta[:, -1].reshape(-1, 1)

least_mean_squares(psi, y)

Estimate the model parameters using the Least Mean Squares filter.

Parameters:

Name Type Description Default
psi ndarray of floats

The information matrix of the model.

required
y array-like of shape = y_training

The data used to training the model.

required

Returns:

Name Type Description
theta array-like of shape = number_of_model_elements

The estimated parameters of the model.

Notes

A more in-depth documentation of all methods for parameters estimation will be available soon. For now, please refer to the mentioned references.

References
  • Book: Haykin, S., & Widrow, B. (Eds.). (2003). Least-mean-square adaptive filters (Vol. 31). John Wiley & Sons.
  • Dissertation (Portuguese): Zipf, J. G. F. (2011). Classificação, análise estatística e novas estratégias de algoritmos LMS de passo variável.
  • Wikipedia entry on Least Mean Squares https://en.wikipedia.org/wiki/Least_mean_squares_filter
Source code in sysidentpy\parameter_estimation\estimators.py
def least_mean_squares(self, psi: np.ndarray, y: np.ndarray) -> np.ndarray:
    """Estimate the model parameters using the Least Mean Squares filter.

    Parameters
    ----------
    psi : ndarray of floats
        The information matrix of the model.
    y : array-like of shape = y_training
        The data used to training the model.

    Returns
    -------
    theta : array-like of shape = number_of_model_elements
        The estimated parameters of the model.

    Notes
    -----
    A more in-depth documentation of all methods for parameters estimation
    will be available soon. For now, please refer to the mentioned
    references.

    References
    ----------
    - Book: Haykin, S., & Widrow, B. (Eds.). (2003). Least-mean-square
       adaptive filters (Vol. 31). John Wiley & Sons.
    - Dissertation (Portuguese): Zipf, J. G. F. (2011). Classificação,
       análise estatística e novas estratégias de algoritmos LMS de passo
       variável.
    - Wikipedia entry on Least Mean Squares
       https://en.wikipedia.org/wiki/Least_mean_squares_filter

    """
    y, n_theta, n, theta, self.xi = self._initial_values(y, psi)

    for i in range(n_theta, n):
        psi_tmp = psi[i, :].reshape(-1, 1)
        self.xi[i, 0] = y[i, 0] - np.dot(psi_tmp.T, theta[:, i - 1])[0]
        tmp_list = (
            theta[:, i - 1].reshape(-1, 1) + 2 * self.mu * self.xi[i, 0] * psi_tmp
        )
        theta[:, i] = tmp_list.flatten()

    return theta[:, -1].reshape(-1, 1)

least_mean_squares_fourth(psi, y)

Parameter estimation using the LMS Fourth filter.

When the leakage factor, gama, is set to 0 then there is no leakage in the estimation process.

Parameters:

Name Type Description Default
psi ndarray of floats

The information matrix of the model.

required
y ndarray of floats of shape = y_training

The data used to training the model.

required

Returns:

Name Type Description
theta ndarray of floats of shape = number_of_model_elements

The estimated parameters of the model.

Notes

A more in-depth documentation of all methods for parameters estimation will be available soon. For now, please refer to the mentioned references.

References
  • Book: Hayes, M. H. (2009). Statistical digital signal processing and modeling. John Wiley & Sons.
  • Dissertation (Portuguese): Zipf, J. G. F. (2011). Classificação, análise estatística e novas estratégias de algoritmos LMS de passo variável.
  • Manuscript:Gui, G., Mehbodniya, A., & Adachi, F. (2013). Least mean square/fourth algorithm with application to sparse channel estimation. arXiv preprint arXiv:1304.3911. https://arxiv.org/pdf/1304.3911.pdf
  • Manuscript: Nascimento, V. H., & Bermudez, J. C. M. (2005, March). When is the least-mean fourth algorithm mean-square stable? In Proceedings.(ICASSP'05). IEEE International Conference on Acoustics, Speech, and Signal Processing, 2005. (Vol. 4, pp. iv-341). IEEE. http://www.lps.usp.br/vitor/artigos/icassp05.pdf
  • Wikipedia entry on Least Mean Squares https://en.wikipedia.org/wiki/Least_mean_squares_filter
Source code in sysidentpy\parameter_estimation\estimators.py
def least_mean_squares_fourth(self, psi: np.ndarray, y: np.ndarray) -> np.ndarray:
    """Parameter estimation using the  LMS Fourth filter.

    When the leakage factor, gama, is set to 0 then there is no
    leakage in the estimation process.

    Parameters
    ----------
    psi : ndarray of floats
        The information matrix of the model.
    y : ndarray of floats of shape = y_training
        The data used to training the model.

    Returns
    -------
    theta : ndarray of floats of shape = number_of_model_elements
        The estimated parameters of the model.

    Notes
    -----
    A more in-depth documentation of all methods for parameters estimation
    will be available soon. For now, please refer to the mentioned
    references.

    References
    ----------
    - Book: Hayes, M. H. (2009). Statistical digital signal processing
       and modeling. John Wiley & Sons.
    - Dissertation (Portuguese): Zipf, J. G. F. (2011). Classificação,
       análise estatística e novas estratégias de algoritmos LMS de passo
       variável.
    - Manuscript:Gui, G., Mehbodniya, A., & Adachi, F. (2013).
       Least mean square/fourth algorithm with application to sparse
       channel estimation. arXiv preprint arXiv:1304.3911.
       https://arxiv.org/pdf/1304.3911.pdf
    - Manuscript: Nascimento, V. H., & Bermudez, J. C. M. (2005, March).
       When is the least-mean fourth algorithm mean-square stable?
       In Proceedings.(ICASSP'05). IEEE International Conference on
       Acoustics, Speech, and Signal Processing, 2005.
       (Vol. 4, pp. iv-341). IEEE.
       http://www.lps.usp.br/vitor/artigos/icassp05.pdf
    - Wikipedia entry on Least Mean Squares
       https://en.wikipedia.org/wiki/Least_mean_squares_filter

    """
    y, n_theta, n, theta, self.xi = self._initial_values(y, psi)

    for i in range(n_theta, n):
        psi_tmp = psi[i, :].reshape(-1, 1)
        self.xi[i, 0] = y[i, 0] - np.dot(psi_tmp.T, theta[:, i - 1])[0]
        tmp_list = (
            theta[:, i - 1].reshape(-1, 1) + self.mu * psi_tmp * self.xi[i, 0] ** 3
        )
        theta[:, i] = tmp_list.flatten()

    return theta[:, -1].reshape(-1, 1)

least_mean_squares_leaky(psi, y)

Parameter estimation using the Leaky LMS filter.

When the leakage factor, gama, is set to 0 then there is no leakage in the estimation process.

Parameters:

Name Type Description Default
psi ndarray of floats

The information matrix of the model.

required
y array-like of shape = y_training

The data used to training the model.

required

Returns:

Name Type Description
theta array-like of shape = number_of_model_elements

The estimated parameters of the model.

Notes

A more in-depth documentation of all methods for parameters estimation will be available soon. For now, please refer to the mentioned references.

References
  • Book: Hayes, M. H. (2009). Statistical digital signal processing and modeling. John Wiley & Sons.
  • Dissertation (Portuguese): Zipf, J. G. F. (2011). Classificação, análise estatística e novas estratégias de algoritmos LMS de passo variável.
  • Wikipedia entry on Least Mean Squares https://en.wikipedia.org/wiki/Least_mean_squares_filter
Source code in sysidentpy\parameter_estimation\estimators.py
def least_mean_squares_leaky(self, psi: np.ndarray, y: np.ndarray) -> np.ndarray:
    """Parameter estimation using the  Leaky LMS filter.

    When the leakage factor, gama, is set to 0 then there is no
    leakage in the estimation process.

    Parameters
    ----------
    psi : ndarray of floats
        The information matrix of the model.
    y : array-like of shape = y_training
        The data used to training the model.

    Returns
    -------
    theta : array-like of shape = number_of_model_elements
        The estimated parameters of the model.

    Notes
    -----
    A more in-depth documentation of all methods for parameters estimation
    will be available soon. For now, please refer to the mentioned
    references.

    References
    ----------
    - Book: Hayes, M. H. (2009). Statistical digital signal processing
       and modeling. John Wiley & Sons.
    - Dissertation (Portuguese): Zipf, J. G. F. (2011). Classificação,
       análise estatística e novas estratégias de algoritmos LMS de passo
       variável.
    - Wikipedia entry on Least Mean Squares
       https://en.wikipedia.org/wiki/Least_mean_squares_filter

    """
    y, n_theta, n, theta, self.xi = self._initial_values(y, psi)

    for i in range(n_theta, n):
        psi_tmp = psi[i, :].reshape(-1, 1)
        self.xi[i, 0] = y[i, 0] - np.dot(psi_tmp.T, theta[:, i - 1])[0]
        tmp_list = (
            theta[:, i - 1].reshape(-1, 1) * (1 - self.mu * self.gama)
            + self.mu * self.xi[i, 0] * psi_tmp
        )
        theta[:, i] = tmp_list.flatten()

    return theta[:, -1].reshape(-1, 1)

least_mean_squares_mixed_norm(psi, y)

Parameter estimation using the Mixed-norm LMS filter.

The weight factor controls the proportions of the error norms and offers an extra degree of freedom within the adaptation.

Parameters:

Name Type Description Default
psi ndarray of floats

The information matrix of the model.

required
y array-like of shape = y_training

The data used to training the model.

required

Returns:

Name Type Description
theta array-like of shape = number_of_model_elements

The estimated parameters of the model.

Notes

A more in-depth documentation of all methods for parameters estimation will be available soon. For now, please refer to the mentioned references.

References
Source code in sysidentpy\parameter_estimation\estimators.py
def least_mean_squares_mixed_norm(
    self, psi: np.ndarray, y: np.ndarray
) -> np.ndarray:
    """Parameter estimation using the Mixed-norm LMS filter.

    The weight factor controls the proportions of the error norms
    and offers an extra degree of freedom within the adaptation.

    Parameters
    ----------
    psi : ndarray of floats
        The information matrix of the model.
    y : array-like of shape = y_training
        The data used to training the model.

    Returns
    -------
    theta : array-like of shape = number_of_model_elements
        The estimated parameters of the model.

    Notes
    -----
    A more in-depth documentation of all methods for parameters estimation
    will be available soon. For now, please refer to the mentioned
    references.

    References
    ----------
    - Chambers, J. A., Tanrikulu, O., & Constantinides, A. G. (1994).
       Least mean mixed-norm adaptive filtering.
       Electronics letters, 30(19), 1574-1575.
       https://ieeexplore.ieee.org/document/326382
    - Dissertation (Portuguese): Zipf, J. G. F. (2011). Classificação,
       análise estatística e novas estratégias de algoritmos LMS de passo
       variável.
    - Wikipedia entry on Least Mean Squares
       https://en.wikipedia.org/wiki/Least_mean_squares_filter

    """
    y, n_theta, n, theta, self.xi = self._initial_values(y, psi)

    for i in range(n_theta, n):
        psi_tmp = psi[i, :].reshape(-1, 1)
        self.xi[i, 0] = y[i, 0] - np.dot(psi_tmp.T, theta[:, i - 1])[0]
        tmp_list = theta[:, i - 1].reshape(-1, 1) + self.mu * psi_tmp * self.xi[
            i, 0
        ] * (self.weight + (1 - self.weight) * self.xi[i, 0] ** 2)
        theta[:, i] = tmp_list.flatten()

    return theta[:, -1].reshape(-1, 1)

least_mean_squares_normalized_leaky(psi, y)

Parameter estimation using the Normalized Leaky LMS filter.

When the leakage factor, gama, is set to 0 then there is no leakage in the estimation process.

Parameters:

Name Type Description Default
psi ndarray of floats

The information matrix of the model.

required
y array-like of shape = y_training

The data used to training the model.

required

Returns:

Name Type Description
theta array-like of shape = number_of_model_elements

The estimated parameters of the model.

Notes

A more in-depth documentation of all methods for parameters estimation will be available soon. For now, please refer to the mentioned references.

References
  • Book: Hayes, M. H. (2009). Statistical digital signal processing and modeling. John Wiley & Sons.
  • Dissertation (Portuguese): Zipf, J. G. F. (2011). Classificação, análise estatística e novas estratégias de algoritmos LMS de passo variável.
  • Wikipedia entry on Least Mean Squares https://en.wikipedia.org/wiki/Least_mean_squares_filter
Source code in sysidentpy\parameter_estimation\estimators.py
def least_mean_squares_normalized_leaky(
    self, psi: np.ndarray, y: np.ndarray
) -> np.ndarray:
    """Parameter estimation using the  Normalized Leaky LMS filter.

    When the leakage factor, gama, is set to 0 then there is no
    leakage in the estimation process.

    Parameters
    ----------
    psi : ndarray of floats
        The information matrix of the model.
    y : array-like of shape = y_training
        The data used to training the model.

    Returns
    -------
    theta : array-like of shape = number_of_model_elements
        The estimated parameters of the model.

    Notes
    -----
    A more in-depth documentation of all methods for parameters estimation
    will be available soon. For now, please refer to the mentioned
    references.

    References
    ----------
    - Book: Hayes, M. H. (2009). Statistical digital signal processing
       and modeling. John Wiley & Sons.
    - Dissertation (Portuguese): Zipf, J. G. F. (2011). Classificação,
       análise estatística e novas estratégias de algoritmos LMS de passo
       variável.
    - Wikipedia entry on Least Mean Squares
       https://en.wikipedia.org/wiki/Least_mean_squares_filter

    """
    y, n_theta, n, theta, self.xi = self._initial_values(y, psi)

    for i in range(n_theta, n):
        psi_tmp = psi[i, :].reshape(-1, 1)
        self.xi[i, 0] = y[i, 0] - np.dot(psi_tmp.T, theta[:, i - 1])[0]
        tmp_list = theta[:, i - 1].reshape(-1, 1) * (
            1 - self.mu * self.gama
        ) + self.mu * self.xi[i, 0] * psi_tmp / (
            self.eps + np.dot(psi_tmp.T, psi_tmp)
        )
        theta[:, i] = tmp_list.flatten()

    return theta[:, -1].reshape(-1, 1)

least_mean_squares_normalized_sign_error(psi, y)

Parameter estimation using the Normalized Sign-Error LMS filter.

The normalization is used to avoid numerical instability when updating the estimated parameters and the sign of the error vector is used to to change the filter coefficients.

Parameters:

Name Type Description Default
psi ndarray of floats

The information matrix of the model.

required
y array-like of shape = y_training

The data used to training the model.

required

Returns:

Name Type Description
theta array-like of shape = number_of_model_elements

The estimated parameters of the model.

Notes

A more in-depth documentation of all methods for parameters estimation will be available soon. For now, please refer to the mentioned references.

References
  • Book: Hayes, M. H. (2009). Statistical digital signal processing and modeling. John Wiley & Sons.
  • Dissertation (Portuguese): Zipf, J. G. F. (2011). Classificação, análise estatística e novas estratégias de algoritmos LMS de passo variável.
  • Wikipedia entry on Least Mean Squares https://en.wikipedia.org/wiki/Least_mean_squares_filter
Source code in sysidentpy\parameter_estimation\estimators.py
def least_mean_squares_normalized_sign_error(
    self, psi: np.ndarray, y: np.ndarray
) -> np.ndarray:
    """Parameter estimation using the Normalized Sign-Error LMS filter.

    The normalization is used to avoid numerical instability when updating
    the estimated parameters and the sign of the error vector is used to
    to change the filter coefficients.

    Parameters
    ----------
    psi : ndarray of floats
        The information matrix of the model.
    y : array-like of shape = y_training
        The data used to training the model.

    Returns
    -------
    theta : array-like of shape = number_of_model_elements
        The estimated parameters of the model.

    Notes
    -----
    A more in-depth documentation of all methods for parameters estimation
    will be available soon. For now, please refer to the mentioned
    references.

    References
    ----------
    - Book: Hayes, M. H. (2009). Statistical digital signal processing
       and modeling. John Wiley & Sons.
    - Dissertation (Portuguese): Zipf, J. G. F. (2011). Classificação,
       análise estatística e novas estratégias de algoritmos LMS de passo
       variável.
    - Wikipedia entry on Least Mean Squares
       https://en.wikipedia.org/wiki/Least_mean_squares_filter

    """
    y, n_theta, n, theta, self.xi = self._initial_values(y, psi)

    for i in range(n_theta, n):
        psi_tmp = psi[i, :].reshape(-1, 1)
        self.xi[i, 0] = y[i, 0] - np.dot(psi_tmp.T, theta[:, i - 1])[0]
        tmp_list = theta[:, i - 1].reshape(-1, 1) + 2 * self.mu * np.sign(
            self.xi[i, 0]
        ) * (psi_tmp / (self.eps + np.dot(psi_tmp.T, psi_tmp)))
        theta[:, i] = tmp_list.flatten()

    return theta[:, -1].reshape(-1, 1)

least_mean_squares_normalized_sign_regressor(psi, y)

Parameter estimation using the Normalized Sign-Regressor LMS filter.

The normalization is used to avoid numerical instability when updating the estimated parameters and the sign of the information matrix is used to change the filter coefficients.

Parameters:

Name Type Description Default
psi ndarray of floats

The information matrix of the model.

required
y array-like of shape = y_training

The data used to training the model.

required

Returns:

Name Type Description
theta array-like of shape = number_of_model_elements

The estimated parameters of the model.

Notes

A more in-depth documentation of all methods for parameters estimation will be available soon. For now, please refer to the mentioned references.

References

.. [1] Book: Hayes, M. H. (2009). Statistical digital signal processing and modeling. John Wiley & Sons. .. [2] Dissertation (Portuguese): Zipf, J. G. F. (2011). Classificação, análise estatística e novas estratégias de algoritmos LMS de passo variável. .. [3] Wikipedia entry on Least Mean Squares https://en.wikipedia.org/wiki/Least_mean_squares_filter

Source code in sysidentpy\parameter_estimation\estimators.py
def least_mean_squares_normalized_sign_regressor(
    self, psi: np.ndarray, y: np.ndarray
) -> np.ndarray:
    """Parameter estimation using the Normalized Sign-Regressor LMS filter.

    The normalization is used to avoid numerical instability when updating
    the estimated parameters and the sign of the information matrix is
    used to change the filter coefficients.

    Parameters
    ----------
    psi : ndarray of floats
        The information matrix of the model.
    y : array-like of shape = y_training
        The data used to training the model.

    Returns
    -------
    theta : array-like of shape = number_of_model_elements
        The estimated parameters of the model.

    Notes
    -----
    A more in-depth documentation of all methods for parameters estimation
    will be available soon. For now, please refer to the mentioned
    references.

    References
    ----------
    .. [1] Book: Hayes, M. H. (2009). Statistical digital signal processing
       and modeling. John Wiley & Sons.
    .. [2] Dissertation (Portuguese): Zipf, J. G. F. (2011). Classificação,
       análise estatística e novas estratégias de algoritmos LMS de passo
       variável.
    .. [3] Wikipedia entry on Least Mean Squares
       https://en.wikipedia.org/wiki/Least_mean_squares_filter

    """
    y, n_theta, n, theta, self.xi = self._initial_values(y, psi)

    for i in range(n_theta, n):
        psi_tmp = psi[i, :].reshape(-1, 1)
        self.xi[i, 0] = y[i, 0] - np.dot(psi_tmp.T, theta[:, i - 1])[0]
        tmp_list = theta[:, i - 1].reshape(-1, 1) + self.mu * self.xi[i, 0] * (
            np.sign(psi_tmp) / (self.eps + np.dot(psi_tmp.T, psi_tmp))
        )
        theta[:, i] = tmp_list.flatten()

    return theta[:, -1].reshape(-1, 1)

least_mean_squares_normalized_sign_sign(psi, y)

Parameter estimation using the Normalized Sign-Sign LMS filter.

The normalization is used to avoid numerical instability when updating the estimated parameters and both the sign of the information matrix and the sign of the error vector are used to change the filter coefficients.

Parameters:

Name Type Description Default
psi ndarray of floats

The information matrix of the model.

required
y array-like of shape = y_training

The data used to training the model.

required

Returns:

Name Type Description
theta array-like of shape = number_of_model_elements

The estimated parameters of the model.

Notes

A more in-depth documentation of all methods for parameters estimation will be available soon. For now, please refer to the mentioned references.

References
  • Book: Hayes, M. H. (2009). Statistical digital signal processing and modeling. John Wiley & Sons.
  • Dissertation (Portuguese): Zipf, J. G. F. (2011). Classificação, análise estatística e novas estratégias de algoritmos LMS de passo variável.
  • Wikipedia entry on Least Mean Squares https://en.wikipedia.org/wiki/Least_mean_squares_filter
Source code in sysidentpy\parameter_estimation\estimators.py
def least_mean_squares_normalized_sign_sign(
    self, psi: np.ndarray, y: np.ndarray
) -> np.ndarray:
    """Parameter estimation using the Normalized Sign-Sign LMS filter.

    The normalization is used to avoid numerical instability when updating
    the estimated parameters and both the sign of the information matrix
    and the sign of the error vector are used to change the filter
    coefficients.

    Parameters
    ----------
    psi : ndarray of floats
        The information matrix of the model.
    y : array-like of shape = y_training
        The data used to training the model.

    Returns
    -------
    theta : array-like of shape = number_of_model_elements
        The estimated parameters of the model.

    Notes
    -----
    A more in-depth documentation of all methods for parameters estimation
    will be available soon. For now, please refer to the mentioned
    references.

    References
    ----------
    - Book: Hayes, M. H. (2009). Statistical digital signal processing
       and modeling. John Wiley & Sons.
    - Dissertation (Portuguese): Zipf, J. G. F. (2011). Classificação,
       análise estatística e novas estratégias de algoritmos LMS de passo
       variável.
    - Wikipedia entry on Least Mean Squares
       https://en.wikipedia.org/wiki/Least_mean_squares_filter

    """
    y, n_theta, n, theta, self.xi = self._initial_values(y, psi)

    for i in range(n_theta, n):
        psi_tmp = psi[i, :].reshape(-1, 1)
        self.xi[i, 0] = y[i, 0] - np.dot(psi_tmp.T, theta[:, i - 1])[0]
        tmp_list = theta[:, i - 1].reshape(-1, 1) + 2 * self.mu * np.sign(
            self.xi[i, 0]
        ) * (np.sign(psi_tmp) / (self.eps + np.dot(psi_tmp.T, psi_tmp)))
        theta[:, i] = tmp_list.flatten()

    return theta[:, -1].reshape(-1, 1)

least_mean_squares_sign_error(psi, y)

Parameter estimation using the Sign-Error Least Mean Squares filter.

The sign-error LMS algorithm uses the sign of the error vector to change the filter coefficients.

Parameters:

Name Type Description Default
psi ndarray of floats

The information matrix of the model.

required
y array-like of shape = y_training

The data used to training the model.

required

Returns:

Name Type Description
theta array-like of shape = number_of_model_elements

The estimated parameters of the model.

Notes

A more in-depth documentation of all methods for parameters estimation will be available soon. For now, please refer to the mentioned references.

References
  • Book: Hayes, M. H. (2009). Statistical digital signal processing and modeling. John Wiley & Sons.
  • Dissertation (Portuguese): Zipf, J. G. F. (2011). Classificação, análise estatística e novas estratégias de algoritmos LMS de passo variável.
  • Wikipedia entry on Least Mean Squares https://en.wikipedia.org/wiki/Least_mean_squares_filter
Source code in sysidentpy\parameter_estimation\estimators.py
def least_mean_squares_sign_error(
    self, psi: np.ndarray, y: np.ndarray
) -> np.ndarray:
    """Parameter estimation using the Sign-Error  Least Mean Squares filter.

    The sign-error LMS algorithm uses the sign of the error vector
    to change the filter coefficients.

    Parameters
    ----------
    psi : ndarray of floats
        The information matrix of the model.
    y : array-like of shape = y_training
        The data used to training the model.

    Returns
    -------
    theta : array-like of shape = number_of_model_elements
        The estimated parameters of the model.

    Notes
    -----
    A more in-depth documentation of all methods for parameters estimation
    will be available soon. For now, please refer to the mentioned
    references.

    References
    ----------
    - Book: Hayes, M. H. (2009). Statistical digital signal processing
       and modeling. John Wiley & Sons.
    - Dissertation (Portuguese): Zipf, J. G. F. (2011). Classificação,
       análise estatística e novas estratégias de algoritmos LMS de passo
       variável.
    - Wikipedia entry on Least Mean Squares
       https://en.wikipedia.org/wiki/Least_mean_squares_filter

    """
    y, n_theta, n, theta, self.xi = self._initial_values(y, psi)

    for i in range(n_theta, n):
        psi_tmp = psi[i, :].reshape(-1, 1)
        self.xi[i, 0] = y[i, 0] - np.dot(psi_tmp.T, theta[:, i - 1])[0]
        tmp_list = (
            theta[:, i - 1].reshape(-1, 1)
            + self.mu * np.sign(self.xi[i, 0]) * psi_tmp
        )
        theta[:, i] = tmp_list.flatten()

    return theta[:, -1].reshape(-1, 1)

least_mean_squares_sign_regressor(psi, y)

Parameter estimation using the Sign-Regressor LMS filter.

The sign-regressor LMS algorithm uses the sign of the matrix information to change the filter coefficients.

Parameters:

Name Type Description Default
psi ndarray of floats

The information matrix of the model.

required
y array-like of shape = y_training

The data used to training the model.

required

Returns:

Name Type Description
theta array-like of shape = number_of_model_elements

The estimated parameters of the model.

Notes

A more in-depth documentation of all methods for parameters estimation will be available soon. For now, please refer to the mentioned references.

References
  • Book: Hayes, M. H. (2009). Statistical digital signal processing and modeling. John Wiley & Sons.
  • Dissertation (Portuguese): Zipf, J. G. F. (2011). Classificação, análise estatística e novas estratégias de algoritmos LMS de passo variável.
  • Wikipedia entry on Least Mean Squares https://en.wikipedia.org/wiki/Least_mean_squares_filter
Source code in sysidentpy\parameter_estimation\estimators.py
def least_mean_squares_sign_regressor(
    self, psi: np.ndarray, y: np.ndarray
) -> np.ndarray:
    """Parameter estimation using the  Sign-Regressor LMS filter.

    The sign-regressor LMS algorithm uses the sign of the matrix
    information to change the filter coefficients.

    Parameters
    ----------
    psi : ndarray of floats
        The information matrix of the model.
    y : array-like of shape = y_training
        The data used to training the model.

    Returns
    -------
    theta : array-like of shape = number_of_model_elements
        The estimated parameters of the model.

    Notes
    -----
    A more in-depth documentation of all methods for parameters estimation
    will be available soon. For now, please refer to the mentioned
    references.

    References
    ----------
    - Book: Hayes, M. H. (2009). Statistical digital signal processing
       and modeling. John Wiley & Sons.
    - Dissertation (Portuguese): Zipf, J. G. F. (2011). Classificação,
       análise estatística e novas estratégias de algoritmos LMS de passo
       variável.
    - Wikipedia entry on Least Mean Squares
       https://en.wikipedia.org/wiki/Least_mean_squares_filter

    """
    y, n_theta, n, theta, self.xi = self._initial_values(y, psi)

    for i in range(n_theta, n):
        psi_tmp = psi[i, :].reshape(-1, 1)
        self.xi[i, 0] = y[i, 0] - np.dot(psi_tmp.T, theta[:, i - 1])[0]
        tmp_list = theta[:, i - 1].reshape(-1, 1) + self.mu * self.xi[
            i, 0
        ] * np.sign(psi_tmp)
        theta[:, i] = tmp_list.flatten()

    return theta[:, -1].reshape(-1, 1)

least_mean_squares_sign_sign(psi, y)

Parameter estimation using the Sign-Sign LMS filter.

The sign-regressor LMS algorithm uses both the sign of the matrix information and the sign of the error vector to change the filter coefficients.

Parameters:

Name Type Description Default
psi ndarray of floats

The information matrix of the model.

required
y array-like of shape = y_training

The data used to training the model.

required

Returns:

Name Type Description
theta array-like of shape = number_of_model_elements

The estimated parameters of the model.

Notes

A more in-depth documentation of all methods for parameters estimation will be available soon. For now, please refer to the mentioned references.

References
  • Book: Hayes, M. H. (2009). Statistical digital signal processing and modeling. John Wiley & Sons.
  • Dissertation (Portuguese): Zipf, J. G. F. (2011). Classificação, análise estatística e novas estratégias de algoritmos LMS de passo variável.
  • Wikipedia entry on Least Mean Squares https://en.wikipedia.org/wiki/Least_mean_squares_filter
Source code in sysidentpy\parameter_estimation\estimators.py
def least_mean_squares_sign_sign(
    self, psi: np.ndarray, y: np.ndarray
) -> np.ndarray:
    """Parameter estimation using the  Sign-Sign LMS filter.

    The sign-regressor LMS algorithm uses both the sign of the matrix
    information and the sign of the error vector to change the filter
    coefficients.

    Parameters
    ----------
    psi : ndarray of floats
        The information matrix of the model.
    y : array-like of shape = y_training
        The data used to training the model.

    Returns
    -------
    theta : array-like of shape = number_of_model_elements
        The estimated parameters of the model.

    Notes
    -----
    A more in-depth documentation of all methods for parameters estimation
    will be available soon. For now, please refer to the mentioned
    references.

    References
    ----------
    - Book: Hayes, M. H. (2009). Statistical digital signal processing
       and modeling. John Wiley & Sons.
    - Dissertation (Portuguese): Zipf, J. G. F. (2011). Classificação,
       análise estatística e novas estratégias de algoritmos LMS de passo
       variável.
    - Wikipedia entry on Least Mean Squares
       https://en.wikipedia.org/wiki/Least_mean_squares_filter

    """
    y, n_theta, n, theta, self.xi = self._initial_values(y, psi)

    for i in range(n_theta, n):
        psi_tmp = psi[i, :].reshape(-1, 1)
        self.xi[i, 0] = y[i, 0] - np.dot(psi_tmp.T, theta[:, i - 1])[0]
        tmp_list = theta[:, i - 1].reshape(-1, 1) + 2 * self.mu * np.sign(
            self.xi[i, 0]
        ) * np.sign(psi_tmp)
        theta[:, i] = tmp_list.flatten()

    return theta[:, -1].reshape(-1, 1)

least_squares(psi, y)

Estimate the model parameters using Least Squares method.

Parameters:

Name Type Description Default
psi ndarray of floats

The information matrix of the model.

required
y array-like of shape = y_training

The data used to training the model.

required

Returns:

Name Type Description
theta array-like of shape = number_of_model_elements

The estimated parameters of the model.

References
Source code in sysidentpy\parameter_estimation\estimators.py
def least_squares(self, psi: np.ndarray, y: np.ndarray) -> np.ndarray:
    """Estimate the model parameters using Least Squares method.

    Parameters
    ----------
    psi : ndarray of floats
        The information matrix of the model.
    y : array-like of shape = y_training
        The data used to training the model.

    Returns
    -------
    theta : array-like of shape = number_of_model_elements
        The estimated parameters of the model.

    References
    ----------
    - Manuscript: Sorenson, H. W. (1970). Least-squares estimation:
       from Gauss to Kalman. IEEE spectrum, 7(7), 63-68.
       http://pzs.dstu.dp.ua/DataMining/mls/bibl/Gauss2Kalman.pdf
    - Book (Portuguese): Aguirre, L. A. (2007). Introdução identificação
       de sistemas: técnicas lineares e não-lineares aplicadas a sistemas
       reais. Editora da UFMG. 3a edição.
    - Manuscript: Markovsky, I., & Van Huffel, S. (2007).
       Overview of total least-squares methods.
       Signal processing, 87(10), 2283-2302.
       https://eprints.soton.ac.uk/263855/1/tls_overview.pdf
    - Wikipedia entry on Least Squares
       https://en.wikipedia.org/wiki/Least_squares

    """
    self._check_linear_dependence_rows(psi)

    y = y[self.max_lag :, 0].reshape(-1, 1)
    theta = np.linalg.lstsq(psi, y, rcond=None)[0]
    return theta

normalized_least_mean_squares(psi, y)

Parameter estimation using the Normalized Least Mean Squares filter.

The normalization is used to avoid numerical instability when updating the estimated parameters.

Parameters:

Name Type Description Default
psi ndarray of floats

The information matrix of the model.

required
y array-like of shape = y_training

The data used to training the model.

required

Returns:

Name Type Description
theta array-like of shape = number_of_model_elements

The estimated parameters of the model.

Notes

A more in-depth documentation of all methods for parameters estimation will be available soon. For now, please refer to the mentioned references.

References
  • Book: Hayes, M. H. (2009). Statistical digital signal processing and modeling. John Wiley & Sons.
  • Dissertation (Portuguese): Zipf, J. G. F. (2011). Classificação, análise estatística e novas estratégias de algoritmos LMS de passo variável.
  • Wikipedia entry on Least Mean Squares https://en.wikipedia.org/wiki/Least_mean_squares_filter
Source code in sysidentpy\parameter_estimation\estimators.py
def normalized_least_mean_squares(
    self, psi: np.ndarray, y: np.ndarray
) -> np.ndarray:
    """Parameter estimation using the Normalized Least Mean Squares filter.

    The normalization is used to avoid numerical instability when updating
    the estimated parameters.

    Parameters
    ----------
    psi : ndarray of floats
        The information matrix of the model.
    y : array-like of shape = y_training
        The data used to training the model.

    Returns
    -------
    theta : array-like of shape = number_of_model_elements
        The estimated parameters of the model.

    Notes
    -----
    A more in-depth documentation of all methods for parameters estimation
    will be available soon. For now, please refer to the mentioned
    references.

    References
    ----------
    - Book: Hayes, M. H. (2009). Statistical digital signal processing
       and modeling. John Wiley & Sons.
    - Dissertation (Portuguese): Zipf, J. G. F. (2011). Classificação,
       análise estatística e novas estratégias de algoritmos LMS de passo
       variável.
    - Wikipedia entry on Least Mean Squares
       https://en.wikipedia.org/wiki/Least_mean_squares_filter

    """
    y, n_theta, n, theta, self.xi = self._initial_values(y, psi)

    for i in range(n_theta, n):
        psi_tmp = psi[i, :].reshape(-1, 1)
        self.xi[i, 0] = y[i, 0] - np.dot(psi_tmp.T, theta[:, i - 1])[0]
        tmp_list = theta[:, i - 1].reshape(-1, 1) + 2 * self.mu * self.xi[i, 0] * (
            psi_tmp / (self.eps + np.dot(psi_tmp.T, psi_tmp))
        )
        theta[:, i] = tmp_list.flatten()

    return theta[:, -1].reshape(-1, 1)

recursive_least_squares(psi, y)

Estimate the model parameters using the Recursive Least Squares method.

The implementation consider the forgetting factor.

Parameters:

Name Type Description Default
psi ndarray of floats

The information matrix of the model.

required
y array-like of shape = y_training

The data used to training the model.

required

Returns:

Name Type Description
theta array-like of shape = number_of_model_elements

The estimated parameters of the model.

Notes

A more in-depth documentation of all methods for parameters estimation will be available soon. For now, please refer to the mentioned references.

References
  • Book (Portuguese): Aguirre, L. A. (2007). Introdução identificação de sistemas: técnicas lineares e não-lineares aplicadas a sistemas reais. Editora da UFMG. 3a edição.
Source code in sysidentpy\parameter_estimation\estimators.py
def recursive_least_squares(self, psi: np.ndarray, y: np.ndarray) -> np.ndarray:
    """Estimate the model parameters using the Recursive Least Squares method.

    The implementation consider the forgetting factor.

    Parameters
    ----------
    psi : ndarray of floats
        The information matrix of the model.
    y : array-like of shape = y_training
        The data used to training the model.

    Returns
    -------
    theta : array-like of shape = number_of_model_elements
        The estimated parameters of the model.

    Notes
    -----
    A more in-depth documentation of all methods for parameters estimation
    will be available soon. For now, please refer to the mentioned
    references.

    References
    ----------
    - Book (Portuguese): Aguirre, L. A. (2007). Introdução identificação
       de sistemas: técnicas lineares e não-lineares aplicadas a sistemas
       reais. Editora da UFMG. 3a edição.

    """
    y, n_theta, n, theta, self.xi = self._initial_values(y, psi)

    p = np.eye(n_theta) / self.delta

    for i in range(2, n):
        psi_tmp = psi[i, :].reshape(-1, 1)
        k_numerator = self.lam ** (-1) * p.dot(psi_tmp)
        k_denominator = 1 + self.lam ** (-1) * psi_tmp.T.dot(p).dot(psi_tmp)
        k = np.divide(k_numerator, k_denominator)
        self.xi[i, 0] = y[i, 0] - np.dot(psi_tmp.T, theta[:, i - 1])[0]
        tmp_list = theta[:, i - 1].reshape(-1, 1) + k.dot(self.xi[i, 0])
        theta[:, i] = tmp_list.flatten()

        p1 = p.dot(psi[i, :].reshape(-1, 1)).dot(psi[i, :].reshape(-1, 1).T).dot(p)
        p2 = (
            psi[i, :].reshape(-1, 1).T.dot(p).dot(psi[i, :].reshape(-1, 1))
            + self.lam
        )

        p_numerator = p - np.divide(p1, p2)
        p = np.divide(p_numerator, self.lam)

    self.theta_evolution = theta.copy()
    return theta[:, -1].reshape(-1, 1)

ridge_regression(psi, y)

Estimate the model parameters using SVD and Ridge Regression method.

Parameters:

Name Type Description Default
psi ndarray of floats

The information matrix of the model.

required
y array-like of shape = y_training

The data used to training the model.

required

Returns:

Name Type Description
theta array-like of shape = number_of_model_elements

The estimated parameters of the model.

References
  • Manuscript: Hoerl, A. E.; Kennard, R. W. Ridge regression: applications to nonorthogonal problems. Technometrics, Taylor & Francis, v. 12, n. 1, p. 69-82, 1970.

  • StackExchange: whuber. The proof of shrinking coefficients using ridge regression through "spectral decomposition". Cross Validated, accessed 21 September 2023, https://stats.stackexchange.com/q/220324

Source code in sysidentpy\parameter_estimation\estimators.py
def ridge_regression(self, psi: np.ndarray, y: np.ndarray) -> np.ndarray:
    """Estimate the model parameters using SVD and Ridge Regression method.

    Parameters
    ----------
    psi : ndarray of floats
        The information matrix of the model.
    y : array-like of shape = y_training
        The data used to training the model.

    Returns
    -------
    theta : array-like of shape = number_of_model_elements
        The estimated parameters of the model.

    References
    ----------
    - Manuscript: Hoerl, A. E.; Kennard, R. W. Ridge regression:
                  applications to nonorthogonal problems. Technometrics,
                  Taylor & Francis, v. 12, n. 1, p. 69-82, 1970.

    - StackExchange: whuber. The proof of shrinking coefficients using ridge
                     regression through "spectral decomposition".
                     Cross Validated, accessed 21 September 2023,
                     https://stats.stackexchange.com/q/220324
    """
    self._check_linear_dependence_rows(psi)
    y = y[self.max_lag :, 0].reshape(-1, 1)
    try:
        U, S, Vh = np.linalg.svd(psi, full_matrices=False)
        S = np.diag(S)
        i = np.identity(len(S))
        theta = Vh.T @ np.linalg.inv(S**2 + self.alpha * i) @ S @ U.T @ y
    except EstimatorError:
        warnings.warn(
            "The SVD computation did not converge."
            "Theta values will be calculated with the classic algorithm.",
            stacklevel=2,
        )

        theta = self.ridge_regression_classic(psi, y)

    return theta

ridge_regression_classic(psi, y)

Estimate the model parameters using ridge regression.

Based on the least_squares module and uses the same data format but you need to pass alpha in the call to FROLS.

Parameters:

Name Type Description Default
psi ndarray of floats

The information matrix of the model.

required
y array-like of shape = y_training

The data used to training the model.

required

Returns:

Name Type Description
theta array-like of shape = number_of_model_elements

The estimated parameters of the model.

References

alpha multiplied by the identity matrix (np.eye) favors models (theta) that have small size using an L2 norm. This prevents over fitting of the model. For applications where preventing overfitting is important, see, for example, D. J. Gauthier, E. Bollt, A. Griffith, W. A. S. Barbosa, 'Next generation reservoir computing,' Nat. Commun. 12, 5564 (2021). https://www.nature.com/articles/s41467-021-25801-2

Source code in sysidentpy\parameter_estimation\estimators.py
def ridge_regression_classic(self, psi: np.ndarray, y: np.ndarray) -> np.ndarray:
    """Estimate the model parameters using ridge regression.

       Based on the least_squares module and uses the same data format but you need
       to pass alpha in the call to FROLS.

    Parameters
    ----------
    psi : ndarray of floats
        The information matrix of the model.
    y : array-like of shape = y_training
        The data used to training the model.

    Returns
    -------
    theta : array-like of shape = number_of_model_elements
        The estimated parameters of the model.

    References
    ----------
    - Wikipedia entry on ridge regression
      https://en.wikipedia.org/wiki/Ridge_regression

    alpha multiplied by the identity matrix (np.eye) favors models (theta) that
    have small size using an L2 norm.  This prevents over fitting of the model.
    For applications where preventing overfitting is important, see, for example,
    D. J. Gauthier, E. Bollt, A. Griffith, W. A. S. Barbosa, 'Next generation
    reservoir computing,' Nat. Commun. 12, 5564 (2021).
    https://www.nature.com/articles/s41467-021-25801-2

    """
    self._check_linear_dependence_rows(psi)

    y = y[self.max_lag :, 0].reshape(-1, 1)
    theta = (
        np.linalg.pinv(psi.T @ psi + self.alpha * np.eye(psi.shape[1])) @ psi.T @ y
    )
    return theta

total_least_squares(psi, y)

Estimate the model parameters using Total Least Squares method.

Parameters:

Name Type Description Default
psi ndarray of floats

The information matrix of the model.

required
y array-like of shape = y_training

The data used to training the model.

required

Returns:

Name Type Description
theta array-like of shape = number_of_model_elements

The estimated parameters of the model.

References
Source code in sysidentpy\parameter_estimation\estimators.py
def total_least_squares(self, psi: np.ndarray, y: np.ndarray) -> np.ndarray:
    """Estimate the model parameters using Total Least Squares method.

    Parameters
    ----------
    psi : ndarray of floats
        The information matrix of the model.
    y : array-like of shape = y_training
        The data used to training the model.

    Returns
    -------
    theta : array-like of shape = number_of_model_elements
        The estimated parameters of the model.

    References
    ----------
    - Manuscript: Golub, G. H., & Van Loan, C. F. (1980).
       An analysis of the total least squares problem.
       SIAM journal on numerical analysis, 17(6), 883-893.
    - Manuscript: Markovsky, I., & Van Huffel, S. (2007).
       Overview of total least-squares methods.
       Signal processing, 87(10), 2283-2302.
       https://eprints.soton.ac.uk/263855/1/tls_overview.pdf
    - Wikipedia entry on Total Least Squares
       https://en.wikipedia.org/wiki/Total_least_squares

    """
    y = y[self.max_lag :, 0].reshape(-1, 1)
    full = np.hstack((psi, y))
    n = psi.shape[1]
    _, _, v = np.linalg.svd(full, full_matrices=True)
    theta = -v.T[:n, n:] / v.T[n:, n:]
    return theta.reshape(-1, 1)