Skip to content

Documentation for Basis Functions

Basis Function for NARMAX models.

Fourier

Build Fourier basis function.

Generate a new feature matrix consisting of all Fourier features with respect to the number of harmonics.

Parameters:

Name Type Description Default
degree int(max_degree)

The maximum degree of the polynomial features.

2
Notes

Be aware that the number of features in the output array scales significantly as the number of inputs, the max lag of the input and output.

Source code in sysidentpy\basis_function\_basis_function.py
class Fourier:
    """Build Fourier basis function.

    Generate a new feature matrix consisting of all Fourier features
    with respect to the number of harmonics.

    Parameters
    ----------
    degree : int (max_degree), default=2
        The maximum degree of the polynomial features.

    Notes
    -----
    Be aware that the number of features in the output array scales
    significantly as the number of inputs, the max lag of the input and output.

    """

    def __init__(
        self, n: int = 1, p: float = 2 * np.pi, degree: int = 1, ensemble: bool = True
    ):
        self.n = n
        self.p = p
        self.degree = degree
        self.ensemble = ensemble
        self.repetition = None

    def _fourier_expansion(self, data: np.ndarray, n: int):
        base = np.column_stack(
            [
                np.cos(2 * np.pi * data * n / self.p),
                np.sin(2 * np.pi * data * n / self.p),
            ]
        )
        return base

    def fit(
        self,
        data: np.ndarray,
        max_lag: int = 1,
        predefined_regressors: Optional[np.ndarray] = None,
    ):
        """Build the Polynomial information matrix.

        Each columns of the information matrix represents a candidate
        regressor. The set of candidate regressors are based on xlag,
        ylag, and degree defined by the user.

        Parameters
        ----------
        data : ndarray of floats
            The lagged matrix built with respect to each lag and column.
        max_lag : int
            Target data used on training phase.
        predefined_regressors : ndarray of int
            The index of the selected regressors by the Model Structure
            Selection algorithm.

        Returns
        -------
        psi = ndarray of floats
            The lagged matrix built in respect with each lag and column.

        """
        # remove intercept (because the data always have the intercept)
        if self.degree > 1:
            data = Polynomial().fit(data, max_lag, predefined_regressors=None)
            data = data[:, 1:]
        else:
            data = data[max_lag:, 1:]

        columns = list(range(data.shape[1]))
        harmonics = list(range(1, self.n + 1))
        psi = np.zeros([len(data), 1])

        for col in columns:
            base_col = np.column_stack(
                [self._fourier_expansion(data[:, col], h) for h in harmonics]
            )
            psi = np.column_stack([psi, base_col])

        self.repetition = self.n * 2
        if self.ensemble:
            psi = psi[:, 1:]
            psi = np.column_stack([data, psi])
        else:
            psi = psi[:, 1:]

        if predefined_regressors is None:
            return psi, self.ensemble

        return psi[:, predefined_regressors], self.ensemble

    def transform(
        self,
        data: np.ndarray,
        max_lag: int = 1,
        predefined_regressors: Optional[np.ndarray] = None,
    ):
        """Build Fourier Basis Functions.

        Parameters
        ----------
        data : ndarray of floats
            The lagged matrix built with respect to each lag and column.
        max_lag : int
            Maximum lag of list of regressors.
        predefined_regressors: ndarray
            Regressors to be filtered in the transformation.

        Returns
        -------
        X_tr : {ndarray, sparse matrix} of shape (n_samples, n_features)
            Transformed array.

        """
        return self.fit(data, max_lag, predefined_regressors)

fit(data, max_lag=1, predefined_regressors=None)

Build the Polynomial information matrix.

Each columns of the information matrix represents a candidate regressor. The set of candidate regressors are based on xlag, ylag, and degree defined by the user.

Parameters:

Name Type Description Default
data ndarray of floats

The lagged matrix built with respect to each lag and column.

required
max_lag int

Target data used on training phase.

1
predefined_regressors ndarray of int

The index of the selected regressors by the Model Structure Selection algorithm.

None

Returns:

Type Description
psi = ndarray of floats

The lagged matrix built in respect with each lag and column.

Source code in sysidentpy\basis_function\_basis_function.py
def fit(
    self,
    data: np.ndarray,
    max_lag: int = 1,
    predefined_regressors: Optional[np.ndarray] = None,
):
    """Build the Polynomial information matrix.

    Each columns of the information matrix represents a candidate
    regressor. The set of candidate regressors are based on xlag,
    ylag, and degree defined by the user.

    Parameters
    ----------
    data : ndarray of floats
        The lagged matrix built with respect to each lag and column.
    max_lag : int
        Target data used on training phase.
    predefined_regressors : ndarray of int
        The index of the selected regressors by the Model Structure
        Selection algorithm.

    Returns
    -------
    psi = ndarray of floats
        The lagged matrix built in respect with each lag and column.

    """
    # remove intercept (because the data always have the intercept)
    if self.degree > 1:
        data = Polynomial().fit(data, max_lag, predefined_regressors=None)
        data = data[:, 1:]
    else:
        data = data[max_lag:, 1:]

    columns = list(range(data.shape[1]))
    harmonics = list(range(1, self.n + 1))
    psi = np.zeros([len(data), 1])

    for col in columns:
        base_col = np.column_stack(
            [self._fourier_expansion(data[:, col], h) for h in harmonics]
        )
        psi = np.column_stack([psi, base_col])

    self.repetition = self.n * 2
    if self.ensemble:
        psi = psi[:, 1:]
        psi = np.column_stack([data, psi])
    else:
        psi = psi[:, 1:]

    if predefined_regressors is None:
        return psi, self.ensemble

    return psi[:, predefined_regressors], self.ensemble

transform(data, max_lag=1, predefined_regressors=None)

Build Fourier Basis Functions.

Parameters:

Name Type Description Default
data ndarray of floats

The lagged matrix built with respect to each lag and column.

required
max_lag int

Maximum lag of list of regressors.

1
predefined_regressors Optional[ndarray]

Regressors to be filtered in the transformation.

None

Returns:

Name Type Description
X_tr {ndarray, sparse matrix} of shape (n_samples, n_features)

Transformed array.

Source code in sysidentpy\basis_function\_basis_function.py
def transform(
    self,
    data: np.ndarray,
    max_lag: int = 1,
    predefined_regressors: Optional[np.ndarray] = None,
):
    """Build Fourier Basis Functions.

    Parameters
    ----------
    data : ndarray of floats
        The lagged matrix built with respect to each lag and column.
    max_lag : int
        Maximum lag of list of regressors.
    predefined_regressors: ndarray
        Regressors to be filtered in the transformation.

    Returns
    -------
    X_tr : {ndarray, sparse matrix} of shape (n_samples, n_features)
        Transformed array.

    """
    return self.fit(data, max_lag, predefined_regressors)

Polynomial

Bases: BaseBasisFunction

Build polynomial basis function.

Generate a new feature matrix consisting of all polynomial combinations of the features with degree less than or equal to the specified degree.

\[ y_k = \sum_{i=1}^{p}\Theta_i \times \prod_{j=0}^{n_x}u_{k-j}^{b_i, j} \prod_{l=1}^{n_e}e_{k-l}^{d_i, l}\prod_{m=1}^{n_y}y_{k-m}^{a_i, m} \]

where \(p\) is the number of regressors, \(\Theta_i\) are the model parameters, and \(a_i, m, b_i, j\) and \(d_i, l \in \mathbb{N}\) are the exponents of the output, input and noise terms, respectively.

Parameters:

Name Type Description Default
degree int(max_degree)

The maximum degree of the polynomial features.

2
Notes

Be aware that the number of features in the output array scales significantly as the number of inputs, the max lag of the input and output, and degree increases. High degrees can cause overfitting.

Source code in sysidentpy\basis_function\_basis_function.py
class Polynomial(BaseBasisFunction):
    r"""Build polynomial basis function.

    Generate a new feature matrix consisting of all polynomial combinations
    of the features with degree less than or equal to the specified degree.

    $$
        y_k = \sum_{i=1}^{p}\Theta_i \times \prod_{j=0}^{n_x}u_{k-j}^{b_i, j}
        \prod_{l=1}^{n_e}e_{k-l}^{d_i, l}\prod_{m=1}^{n_y}y_{k-m}^{a_i, m}
    $$

    where $p$ is the number of regressors, $\Theta_i$ are the
    model parameters, and $a_i, m, b_i, j$ and $d_i, l \in \mathbb{N}$
    are the exponents of the output, input and noise terms, respectively.

    Parameters
    ----------
    degree : int (max_degree), default=2
        The maximum degree of the polynomial features.

    Notes
    -----
    Be aware that the number of features in the output array scales
    significantly as the number of inputs, the max lag of the input and output, and
    degree increases. High degrees can cause overfitting.
    """

    def __init__(
        self,
        degree: int = 2,
    ):
        self.degree = degree

    def fit(
        self,
        data: np.ndarray,
        max_lag: int = 1,
        predefined_regressors: Optional[np.ndarray] = None,
    ):
        """Build the Polynomial information matrix.

        Each columns of the information matrix represents a candidate
        regressor. The set of candidate regressors are based on xlag,
        ylag, and degree defined by the user.

        Parameters
        ----------
        data : ndarray of floats
            The lagged matrix built with respect to each lag and column.
        max_lag : int
            Target data used on training phase.
        predefined_regressors : ndarray of int
            The index of the selected regressors by the Model Structure
            Selection algorithm.

        Returns
        -------
        psi = ndarray of floats
            The lagged matrix built in respect with each lag and column.

        """
        # Create combinations of all columns based on its index
        iterable_list = range(data.shape[1])
        combinations = list(combinations_with_replacement(iterable_list, self.degree))
        if predefined_regressors is not None:
            combinations = [combinations[index] for index in predefined_regressors]

        psi = np.column_stack(
            [
                np.prod(data[:, combinations[i]], axis=1)
                for i in range(len(combinations))
            ]
        )
        psi = psi[max_lag:, :]
        return psi

    def transform(
        self,
        data: np.ndarray,
        max_lag: int = 1,
        predefined_regressors: Optional[np.ndarray] = None,
    ):
        """Build Polynomial Basis Functions.

        Parameters
        ----------
        data : ndarray of floats
            The lagged matrix built with respect to each lag and column.
        max_lag : int
            Maximum lag of list of regressors.
        predefined_regressors: ndarray
            Regressors to be filtered in the transformation.

        Returns
        -------
        X_tr : {ndarray, sparse matrix} of shape (n_samples, n_features)
            Transformed array.

        """
        return self.fit(data, max_lag, predefined_regressors)

fit(data, max_lag=1, predefined_regressors=None)

Build the Polynomial information matrix.

Each columns of the information matrix represents a candidate regressor. The set of candidate regressors are based on xlag, ylag, and degree defined by the user.

Parameters:

Name Type Description Default
data ndarray of floats

The lagged matrix built with respect to each lag and column.

required
max_lag int

Target data used on training phase.

1
predefined_regressors ndarray of int

The index of the selected regressors by the Model Structure Selection algorithm.

None

Returns:

Type Description
psi = ndarray of floats

The lagged matrix built in respect with each lag and column.

Source code in sysidentpy\basis_function\_basis_function.py
def fit(
    self,
    data: np.ndarray,
    max_lag: int = 1,
    predefined_regressors: Optional[np.ndarray] = None,
):
    """Build the Polynomial information matrix.

    Each columns of the information matrix represents a candidate
    regressor. The set of candidate regressors are based on xlag,
    ylag, and degree defined by the user.

    Parameters
    ----------
    data : ndarray of floats
        The lagged matrix built with respect to each lag and column.
    max_lag : int
        Target data used on training phase.
    predefined_regressors : ndarray of int
        The index of the selected regressors by the Model Structure
        Selection algorithm.

    Returns
    -------
    psi = ndarray of floats
        The lagged matrix built in respect with each lag and column.

    """
    # Create combinations of all columns based on its index
    iterable_list = range(data.shape[1])
    combinations = list(combinations_with_replacement(iterable_list, self.degree))
    if predefined_regressors is not None:
        combinations = [combinations[index] for index in predefined_regressors]

    psi = np.column_stack(
        [
            np.prod(data[:, combinations[i]], axis=1)
            for i in range(len(combinations))
        ]
    )
    psi = psi[max_lag:, :]
    return psi

transform(data, max_lag=1, predefined_regressors=None)

Build Polynomial Basis Functions.

Parameters:

Name Type Description Default
data ndarray of floats

The lagged matrix built with respect to each lag and column.

required
max_lag int

Maximum lag of list of regressors.

1
predefined_regressors Optional[ndarray]

Regressors to be filtered in the transformation.

None

Returns:

Name Type Description
X_tr {ndarray, sparse matrix} of shape (n_samples, n_features)

Transformed array.

Source code in sysidentpy\basis_function\_basis_function.py
def transform(
    self,
    data: np.ndarray,
    max_lag: int = 1,
    predefined_regressors: Optional[np.ndarray] = None,
):
    """Build Polynomial Basis Functions.

    Parameters
    ----------
    data : ndarray of floats
        The lagged matrix built with respect to each lag and column.
    max_lag : int
        Maximum lag of list of regressors.
    predefined_regressors: ndarray
        Regressors to be filtered in the transformation.

    Returns
    -------
    X_tr : {ndarray, sparse matrix} of shape (n_samples, n_features)
        Transformed array.

    """
    return self.fit(data, max_lag, predefined_regressors)