Skip to content

Basic Usage

The NARMAX model is described as:

\[ y_k= F[y_{k-1}, \dotsc, y_{k-n_y},x_{k-d}, x_{k-d-1}, \dotsc, x_{k-d-n_x}, e_{k-1}, \dotsc, e_{k-n_e}] + e_k \]

where \(n_y\in \mathbb{N}\), \(n_x \in \mathbb{N}\), \(n_e \in \mathbb{N}\), are the maximum lags for the system output and input respectively; \(x_k \in \mathbb{R}^{n_x}\) is the system input and \(y_k \in \mathbb{R}^{n_y}\) is the system output at discrete time \(k \in \mathbb{N}^n\); \(e_k \in \mathbb{R}^{n_e}\) stands for uncertainties and possible noise at discrete time \(k\). In this case, \(\mathcal{F}\) is some nonlinear function of the input and output regressors and \(d\) is a time delay typically set to \(d=1\).

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from sysidentpy.metrics import mean_squared_error
from sysidentpy.utils.generate_data import get_siso_data


# Generate a dataset of a simulated dynamical system
x_train, x_valid, y_train, y_valid = get_siso_data(
    n=1000,
    colored_noise=False,
    sigma=0.001,
    train_percentage=80
)

Build a Polynomial NARX model

from sysidentpy.model_structure_selection import FROLS
from sysidentpy.basis_function._basis_function import Polynomial
from sysidentpy.parameter_estimation import LeastSquares
from sysidentpy.metrics import root_relative_squared_error
from sysidentpy.utils.generate_data import get_siso_data
from sysidentpy.utils.display_results import results
from sysidentpy.utils.plotting import plot_residues_correlation, plot_results
from sysidentpy.residues.residues_correlation import (
    compute_residues_autocorrelation,
    compute_cross_correlation,
)

basis_function = Polynomial(degree=2)
estimator = LeastSquares()
model = FROLS(
    order_selection=True,
    n_info_values=3,
    ylag=2,
    xlag=2,
    info_criteria="aic",
    estimator=estimator,
    err_tol=None,
    basis_function=basis_function,
)
model.fit(X=x_train, y=y_train)
yhat = model.predict(X=x_valid, y=y_valid)
rrse = root_relative_squared_error(y_valid, yhat)
print(rrse)
r = pd.DataFrame(
    results(
        model.final_model, model.theta, model.err,
        model.n_terms, err_precision=8, dtype='sci'
        ),
    columns=['Regressors', 'Parameters', 'ERR'])
print(r)
Regressors     Parameters        ERR
0        x1(k-2)     0.9000  0.95556574
1         y(k-1)     0.1999  0.04107943
2  x1(k-1)y(k-1)     0.1000  0.00335113
plot_results(y=y_valid, yhat=yhat, n=1000)
ee = compute_residues_autocorrelation(y_valid, yhat)
plot_residues_correlation(data=ee, title="Residues", ylabel="$e^2$")
x1e = compute_cross_correlation(y_valid, yhat, x2_val)
plot_residues_correlation(data=x1e, title="Residues", ylabel="$x_1e$")

Polynomial NARMAX

Validation of the Polynomial NARMAX model

NARX Neural Network

from torch import nn
from sysidentpy.neural_network import NARXNN
from sysidentpy.basis_function._basis_function import Polynomial
from sysidentpy.utils.plotting import plot_residues_correlation, plot_results
from sysidentpy.residues.residues_correlation import compute_residues_autocorrelation, compute_cross_correlation

class NARX(nn.Module):
    def __init__(self):
        super().__init__()
        self.lin = nn.Linear(4, 10)
        self.lin2 = nn.Linear(10, 10)
        self.lin3 = nn.Linear(10, 1)
        self.tanh = nn.Tanh()

    def forward(self, xb):
        z = self.lin(xb)
        z = self.tanh(z)
        z = self.lin2(z)
        z = self.tanh(z)
        z = self.lin3(z)
        return z

basis_function=Polynomial(degree=1)

narx_net = NARXNN(
    net=NARX(),
    ylag=2,
    xlag=2,
    basis_function=basis_function,
    model_type="NARMAX",
    loss_func='mse_loss',
    optimizer='Adam',
    epochs=200,
    verbose=False,
    optim_params={'betas': (0.9, 0.999), 'eps': 1e-05} # optional parameters of the optimizer
)

narx_net.fit(X=x_train, y=y_train)
yhat = narx_net.predict(X=x_valid, y=y_valid)
plot_results(y=y_valid, yhat=yhat, n=200)
ee = compute_residues_autocorrelation(y_valid, yhat)
plot_residues_correlation(data=ee, title="Residues", ylabel="$e^2$")
x1e = compute_cross_correlation(y_valid, yhat, x_valid)
plot_residues_correlation(data=x1e, title="Residues", ylabel="$x_1e$")

Polynomial NARMAX

Validation of the Neural NARX model

Catboost-narx

from sysidentpy.general_estimators import NARX
from catboost import CatBoostRegressor
from sysidentpy.basis_function._basis_function import Polynomial
from sysidentpy.utils.plotting import plot_residues_correlation, plot_results
from sysidentpy.residues.residues_correlation import compute_residues_autocorrelation, compute_cross_correlation

catboost_narx = NARX(
    base_estimator=CatBoostRegressor(
        iterations=300,
        learning_rate=0.1,
        depth=6),
    xlag=2,
    ylag=2,
    basis_function=basis_function,
    model_type="NARMAX",
    fit_params={'verbose': False}
)

catboost_narx.fit(X=x_train, y=y_train)
yhat = catboost_narx.predict(X=x_valid, y=y_valid)
plot_results(y=y_valid, yhat=yhat, n=200)
ee = compute_residues_autocorrelation(y_valid, yhat)
plot_residues_correlation(data=ee, title="Residues", ylabel="$e^2$")
x1e = compute_cross_correlation(y_valid, yhat, x_valid)
plot_residues_correlation(data=x1e, title="Residues", ylabel="$x_1e$")

Polynomial NARMAX

Validation of the Catboost NARX model

Catboost without NARX configuration

The following is the Catboost performance without the NARX configuration.

def plot_results_tmp(y_valid, yhat):
    _, ax = plt.subplots(figsize=(14, 8))
    ax.plot(y_valid[:200], label='Data', marker='o')
    ax.plot(yhat[:200], label='Prediction', marker='*')
    ax.set_xlabel("$n$", fontsize=18)
    ax.set_ylabel("$y[n]$", fontsize=18)
    ax.grid()
    ax.legend(fontsize=18)
    plt.show()

catboost = CatBoostRegressor(
    iterations=300,
    learning_rate=0.1,
    depth=6
)

catboost.fit(x_train, y_train, verbose=False)
plot_results(y_valid, catboost.predict(x_valid))

Polynomial NARMAX

Validation of the Catboost model without NARX configuration