Skip to content

Documentation for General Estimators

Build NARX Models Using general estimators

NARX

Bases: BaseMSS

NARX model build on top of general estimators

Currently is possible to use any estimator that have a fit/predict as an Autoregressive Model. We use our GenerateRegressors and InformationMatrix classes to handle the creation of the lagged features and we are able to use a simple fit and prediction function to run infinity-steps-ahead prediction.

Parameters:

Name Type Description Default
ylag int

The maximum lag of the output.

2
xlag int

The maximum lag of the input.

2
fit_params dict

Optional parameters of the fit function of the baseline estimator

None
base_estimator default=None

The defined base estimator of the sklearn

None

Examples:

>>> import numpy as np
>>> import pandas as pd
>>> import matplotlib.pyplot as plt
>>> from sysidentpy.metrics import mean_squared_error
>>> from sysidentpy.utils.generate_data import get_siso_data
>>> from sysidentpy.general_estimators import NARX
>>> from sklearn.linear_model import BayesianRidge
>>> from sysidentpy.basis_function._basis_function import Polynomial
>>> from sysidentpy.utils.display_results import results
>>> from sysidentpy.utils.plotting import plot_residues_correlation, plot_results
>>> from sysidentpy.residues.residues_correlation import(
...    compute_residues_autocorrelation,
...    compute_cross_correlation
... )
>>> from sklearn.linear_model import BayesianRidge # to use as base estimator
>>> x_train, x_valid, y_train, y_valid = get_siso_data(
...    n=1000,
...    colored_noise=False,
...    sigma=0.01,
...    train_percentage=80
... )
>>> BayesianRidge_narx = NARX(
...     base_estimator=BayesianRidge(),
...     xlag=2,
...     ylag=2,
...     basis_function=basis_function,
...     model_type="NARMAX",
... )
>>> BayesianRidge_narx.fit(x_train, y_train)
>>> yhat = BayesianRidge_narx.predict(x_valid, y_valid)
>>> print("MSE: ", mean_squared_error(y_valid, yhat))
>>> plot_results(y=y_valid, yhat=yhat, n=1000)
>>> ee = compute_residues_autocorrelation(y_valid, yhat)
>>> plot_residues_correlation(data=ee, title="Residues", ylabel="$e^2$")
>>> x1e = compute_cross_correlation(y_valid, yhat, x_valid)
>>> plot_residues_correlation(data=x1e, title="Residues", ylabel="$x_1e$")
0.000131
Source code in sysidentpy\general_estimators\narx.py
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
class NARX(BaseMSS):
    """NARX model build on top of general estimators

    Currently is possible to use any estimator that have a fit/predict
    as an Autoregressive Model. We use our GenerateRegressors and
    InformationMatrix classes to handle the creation of the lagged
    features and we are able to use a simple fit and prediction function
    to run infinity-steps-ahead prediction.

    Parameters
    ----------
    ylag : int, default=2
        The maximum lag of the output.
    xlag : int, default=2
        The maximum lag of the input.
    fit_params : dict, default=None
        Optional parameters of the fit function of the baseline estimator
    base_estimator : default=None
        The defined base estimator of the sklearn

    Examples
    --------
    >>> import numpy as np
    >>> import pandas as pd
    >>> import matplotlib.pyplot as plt
    >>> from sysidentpy.metrics import mean_squared_error
    >>> from sysidentpy.utils.generate_data import get_siso_data
    >>> from sysidentpy.general_estimators import NARX
    >>> from sklearn.linear_model import BayesianRidge
    >>> from sysidentpy.basis_function._basis_function import Polynomial
    >>> from sysidentpy.utils.display_results import results
    >>> from sysidentpy.utils.plotting import plot_residues_correlation, plot_results
    >>> from sysidentpy.residues.residues_correlation import(
    ...    compute_residues_autocorrelation,
    ...    compute_cross_correlation
    ... )
    >>> from sklearn.linear_model import BayesianRidge # to use as base estimator
    >>> x_train, x_valid, y_train, y_valid = get_siso_data(
    ...    n=1000,
    ...    colored_noise=False,
    ...    sigma=0.01,
    ...    train_percentage=80
    ... )
    >>> BayesianRidge_narx = NARX(
    ...     base_estimator=BayesianRidge(),
    ...     xlag=2,
    ...     ylag=2,
    ...     basis_function=basis_function,
    ...     model_type="NARMAX",
    ... )
    >>> BayesianRidge_narx.fit(x_train, y_train)
    >>> yhat = BayesianRidge_narx.predict(x_valid, y_valid)
    >>> print("MSE: ", mean_squared_error(y_valid, yhat))
    >>> plot_results(y=y_valid, yhat=yhat, n=1000)
    >>> ee = compute_residues_autocorrelation(y_valid, yhat)
    >>> plot_residues_correlation(data=ee, title="Residues", ylabel="$e^2$")
    >>> x1e = compute_cross_correlation(y_valid, yhat, x_valid)
    >>> plot_residues_correlation(data=x1e, title="Residues", ylabel="$x_1e$")
    0.000131

    """

    def __init__(
        self,
        *,
        ylag=1,
        xlag=1,
        model_type="NARMAX",
        basis_function=Polynomial(),
        base_estimator=None,
        fit_params=None,
    ):
        self.basis_function = basis_function
        self.model_type = model_type
        self.build_matrix = self.get_build_io_method(model_type)
        self.non_degree = basis_function.degree
        self.ylag = ylag
        self.xlag = xlag
        self.max_lag = self._get_max_lag()
        self.base_estimator = base_estimator
        if fit_params is None:
            fit_params = {}

        self.fit_params = fit_params
        self.ensemble = None
        self.n_inputs = None
        self.regressor_code = None
        self._validate_params()

    def _validate_params(self):
        """Validate input params."""
        if isinstance(self.ylag, int) and self.ylag < 1:
            raise ValueError(f"ylag must be integer and > zero. Got {self.ylag}")

        if isinstance(self.xlag, int) and self.xlag < 1:
            raise ValueError(f"xlag must be integer and > zero. Got {self.xlag}")

        if not isinstance(self.xlag, (int, list)):
            raise ValueError(f"xlag must be integer and > zero. Got {self.xlag}")

        if not isinstance(self.ylag, (int, list)):
            raise ValueError(f"ylag must be integer and > zero. Got {self.ylag}")

        if self.model_type not in ["NARMAX", "NAR", "NFIR"]:
            raise ValueError(
                f"model_type must be NARMAX, NAR or NFIR. Got {self.model_type}"
            )

    def fit(self, *, X=None, y=None):
        """Train a NARX Neural Network model.

        This is an training pipeline that allows a friendly usage
        by the user. All the lagged features are built using the
        SysIdentPy classes and we use the fit method of the base
        estimator of the sklearn to fit the model.

        Parameters
        ----------
        X : ndarrays of floats
            The input data to be used in the training process.
        y : ndarrays of floats
            The output data to be used in the training process.

        Returns
        -------
        base_estimator : sklearn estimator
            The model fitted.

        """
        if y is None:
            raise ValueError("y cannot be None")

        self.max_lag = self._get_max_lag()
        lagged_data = self.build_matrix(X, y)
        if self.basis_function.__class__.__name__ == "Polynomial":
            reg_matrix = self.basis_function.fit(
                lagged_data, self.max_lag, predefined_regressors=None
            )
        else:
            reg_matrix, self.ensemble = self.basis_function.fit(
                lagged_data, self.max_lag, predefined_regressors=None
            )

        if X is not None:
            self.n_inputs = _num_features(X)
        else:
            self.n_inputs = 1  # just to create the regressor space base

        self.regressor_code = self.regressor_space(self.n_inputs)
        self.final_model = self.regressor_code
        y = y[self.max_lag :].ravel()

        self.base_estimator.fit(reg_matrix, y, **self.fit_params)
        return self

    def predict(self, *, X=None, y=None, steps_ahead=None, forecast_horizon=None):
        """Return the predicted given an input and initial values.

        The predict function allows a friendly usage by the user.
        Given a trained model, predict values given
        a new set of data.

        This method accept y values mainly for prediction n-steps ahead
        (to be implemented in the future).

        Currently we only support infinity-steps-ahead prediction,
        but run 1-step-ahead prediction manually is straightforward.

        Parameters
        ----------
        X : ndarray of floats
            The input data to be used in the prediction process.
        y : ndarray of floats
            The output data to be used in the prediction process.
        steps_ahead : int (default = None)
            The user can use free run simulation, one-step ahead prediction
            and n-step ahead prediction.
        forecast_horizon : int, default=None
            The number of predictions over the time.

        Returns
        -------
        yhat : ndarray of floats
            The predicted values of the model.

        """
        if self.basis_function.__class__.__name__ == "Polynomial":
            if steps_ahead is None:
                yhat = self._model_prediction(X, y, forecast_horizon=forecast_horizon)
                yhat = np.concatenate([y[: self.max_lag], yhat], axis=0)
                return yhat

            if steps_ahead == 1:
                yhat = self._one_step_ahead_prediction(X, y)
                yhat = np.concatenate([y[: self.max_lag], yhat], axis=0)
                return yhat

            _check_positive_int(steps_ahead, "steps_ahead")
            yhat = self._n_step_ahead_prediction(X, y, steps_ahead=steps_ahead)
            yhat = np.concatenate([y[: self.max_lag], yhat], axis=0)
            return yhat

        if steps_ahead is None:
            yhat = self._basis_function_predict(X, y, forecast_horizon=forecast_horizon)
            yhat = np.concatenate([y[: self.max_lag], yhat], axis=0)
            return yhat
        if steps_ahead == 1:
            yhat = self._one_step_ahead_prediction(X, y)
            yhat = np.concatenate([y[: self.max_lag], yhat], axis=0)
            return yhat

        yhat = self._basis_function_n_step_prediction(
            X, y, steps_ahead=steps_ahead, forecast_horizon=forecast_horizon
        )
        yhat = np.concatenate([y[: self.max_lag], yhat], axis=0)
        return yhat

    def _one_step_ahead_prediction(self, X, y):
        """Perform the 1-step-ahead prediction of a model.

        Parameters
        ----------
        y : array-like of shape = max_lag
            Initial conditions values of the model
            to start recursive process.
        X : ndarray of floats of shape = n_samples
            Vector with input values to be used in model simulation.

        Returns
        -------
        yhat : ndarray of floats
               The 1-step-ahead predicted values of the model.

        """
        lagged_data = self.build_matrix(X, y)
        if self.basis_function.__class__.__name__ == "Polynomial":
            X_base = self.basis_function.transform(
                lagged_data,
                self.max_lag,
                # predefined_regressors=self.pivv[: len(self.final_model)],
            )
        else:
            X_base, _ = self.basis_function.transform(
                lagged_data,
                self.max_lag,
                # predefined_regressors=self.pivv[: len(self.final_model)],
            )

        yhat = self.base_estimator.predict(X_base)
        # yhat = np.concatenate([y[: self.max_lag].flatten(), yhat])  # delete this one
        return yhat.reshape(-1, 1)

    def _nar_step_ahead(self, y, steps_ahead):
        if len(y) < self.max_lag:
            raise ValueError(
                "Insufficient initial condition elements! Expected at least"
                f" {self.max_lag} elements."
            )

        to_remove = int(np.ceil((len(y) - self.max_lag) / steps_ahead))
        yhat = np.zeros(len(y) + steps_ahead, dtype=float)
        yhat.fill(np.nan)
        yhat[: self.max_lag] = y[: self.max_lag, 0]
        i = self.max_lag

        steps = [step for step in range(0, to_remove * steps_ahead, steps_ahead)]
        if len(steps) > 1:
            for step in steps[:-1]:
                yhat[i : i + steps_ahead] = self._model_prediction(
                    X=None, y_initial=y[step:i], forecast_horizon=steps_ahead
                )[-steps_ahead:].ravel()
                i += steps_ahead

            steps_ahead = np.sum(np.isnan(yhat))
            yhat[i : i + steps_ahead] = self._model_prediction(
                X=None, y_initial=y[steps[-1] : i]
            )[-steps_ahead:].ravel()
        else:
            yhat[i : i + steps_ahead] = self._model_prediction(
                X=None, y_initial=y[0:i], forecast_horizon=steps_ahead
            )[-steps_ahead:].ravel()

        yhat = yhat.ravel()[self.max_lag : :]
        return yhat.reshape(-1, 1)

    def narmax_n_step_ahead(self, X, y, steps_ahead):
        """n_steps ahead prediction method for NARMAX model"""
        if len(y) < self.max_lag:
            raise ValueError(
                "Insufficient initial condition elements! Expected at least"
                f" {self.max_lag} elements."
            )

        to_remove = int(np.ceil((len(y) - self.max_lag) / steps_ahead))
        X = X.reshape(-1, self.n_inputs)
        yhat = np.zeros(X.shape[0], dtype=float)
        yhat.fill(np.nan)
        yhat[: self.max_lag] = y[: self.max_lag, 0]
        i = self.max_lag
        steps = [step for step in range(0, to_remove * steps_ahead, steps_ahead)]
        if len(steps) > 1:
            for step in steps[:-1]:
                yhat[i : i + steps_ahead] = self._model_prediction(
                    X=X[step : i + steps_ahead],
                    y_initial=y[step:i],
                )[-steps_ahead:].ravel()
                i += steps_ahead

            steps_ahead = np.sum(np.isnan(yhat))
            yhat[i : i + steps_ahead] = self._model_prediction(
                X=X[steps[-1] : i + steps_ahead],
                y_initial=y[steps[-1] : i],
            )[-steps_ahead:].ravel()
        else:
            yhat[i : i + steps_ahead] = self._model_prediction(
                X=X[0 : i + steps_ahead],
                y_initial=y[0:i],
            )[-steps_ahead:].ravel()

        yhat = yhat.ravel()[self.max_lag : :]
        return yhat.reshape(-1, 1)

    def _n_step_ahead_prediction(self, X, y, steps_ahead):
        """Perform the n-steps-ahead prediction of a model.

        Parameters
        ----------
        y : array-like of shape = max_lag
            Initial conditions values of the model
            to start recursive process.
        X : ndarray of floats of shape = n_samples
            Vector with input values to be used in model simulation.
        steps_ahead : int (default = None)
            The user can use free run simulation, one-step ahead prediction
            and n-step ahead prediction.

        Returns
        -------
        yhat : ndarray of floats
               The n-steps-ahead predicted values of the model.

        """
        if self.model_type == "NARMAX":
            return self.narmax_n_step_ahead(X, y, steps_ahead)

        if self.model_type == "NAR":
            return self._nar_step_ahead(y, steps_ahead)

    def _model_prediction(self, X, y_initial, forecast_horizon=None):
        """Perform the infinity steps-ahead simulation of a model.

        Parameters
        ----------
        y_initial : array-like of shape = max_lag
            Number of initial conditions values of output
            to start recursive process.
        X : ndarray of floats of shape = n_samples
            Vector with input values to be used in model simulation.
        forecast_horizon : int, default=None
            The number of predictions over the time.

        Returns
        -------
        yhat : ndarray of floats
               The predicted values of the model.

        """
        if self.model_type in ["NARMAX", "NAR"]:
            return self._narmax_predict(X, y_initial, forecast_horizon)
        if self.model_type == "NFIR":
            return self._nfir_predict(X, y_initial)

        raise ValueError(
            f"model_type must be NARMAX, NAR or NFIR. Got {self.model_type}"
        )

    def _narmax_predict(self, X, y_initial, forecast_horizon):
        if len(y_initial) < self.max_lag:
            raise ValueError(
                "Insufficient initial condition elements! Expected at least"
                f" {self.max_lag} elements."
            )

        if X is not None:
            forecast_horizon = X.shape[0]
        else:
            forecast_horizon = forecast_horizon + self.max_lag

        if self.model_type == "NAR":
            self.n_inputs = 0

        y_output = np.zeros(forecast_horizon, dtype=float)
        y_output.fill(np.nan)
        y_output[: self.max_lag] = y_initial[: self.max_lag, 0]

        model_exponents = [
            self._code2exponents(code=model) for model in self.final_model
        ]
        raw_regressor = np.zeros(len(model_exponents[0]), dtype=float)
        for i in range(self.max_lag, forecast_horizon):
            init = 0
            final = self.max_lag
            k = int(i - self.max_lag)
            raw_regressor[:final] = y_output[k:i]
            for j in range(self.n_inputs):
                init += self.max_lag
                final += self.max_lag
                raw_regressor[init:final] = X[k:i, j]

            regressor_value = np.zeros(len(model_exponents))
            for j, model_exponent in enumerate(model_exponents):
                regressor_value[j] = np.prod(np.power(raw_regressor, model_exponent))

            y_output[i] = self.base_estimator.predict(regressor_value.reshape(1, -1))
        return y_output[self.max_lag : :].reshape(-1, 1)

    def _nfir_predict(self, X, y_initial):
        y_output = np.zeros(X.shape[0], dtype=float)
        y_output.fill(np.nan)
        y_output[: self.max_lag] = y_initial[: self.max_lag, 0]
        X = X.reshape(-1, self.n_inputs)
        model_exponents = [
            self._code2exponents(code=model) for model in self.final_model
        ]
        raw_regressor = np.zeros(len(model_exponents[0]), dtype=float)
        for i in range(self.max_lag, X.shape[0]):
            init = 0
            final = self.max_lag
            k = int(i - self.max_lag)
            raw_regressor[:final] = y_output[k:i]
            for j in range(self.n_inputs):
                init += self.max_lag
                final += self.max_lag
                raw_regressor[init:final] = X[k:i, j]

            regressor_value = np.zeros(len(model_exponents))
            for j, model_exponent in enumerate(model_exponents):
                regressor_value[j] = np.prod(np.power(raw_regressor, model_exponent))

            y_output[i] = self.base_estimator.predict(regressor_value.reshape(1, -1))
        return y_output[self.max_lag : :].reshape(-1, 1)

    def _basis_function_predict(self, X, y_initial, forecast_horizon=None):
        if X is not None:
            forecast_horizon = X.shape[0]
        else:
            forecast_horizon = forecast_horizon + self.max_lag

        if self.model_type == "NAR":
            self.n_inputs = 0

        yhat = np.zeros(forecast_horizon, dtype=float)
        yhat.fill(np.nan)
        yhat[: self.max_lag] = y_initial[: self.max_lag, 0]

        analyzed_elements_number = self.max_lag + 1

        for i in range(0, forecast_horizon - self.max_lag):
            lagged_data = self.build_matrix(
                X[i : i + analyzed_elements_number],
                yhat[i : i + analyzed_elements_number].reshape(-1, 1),
            )
            X_tmp, _ = self.basis_function.transform(
                lagged_data,
                self.max_lag,
                # predefined_regressors=self.pivv[: len(self.final_model)],
            )

            a = self.base_estimator.predict(X_tmp)
            yhat[i + self.max_lag] = a[0]

        return yhat[self.max_lag :].reshape(-1, 1)

    def _basis_function_n_step_prediction(self, X, y, steps_ahead, forecast_horizon):
        """Perform the n-steps-ahead prediction of a model.

        Parameters
        ----------
        y : array-like of shape = max_lag
            Initial conditions values of the model
            to start recursive process.
        X : ndarray of floats of shape = n_samples
            Vector with input values to be used in model simulation.
        steps_ahead : int (default = None)
            The user can use free run simulation, one-step ahead prediction
            and n-step ahead prediction.
        forecast_horizon : int, default=None
            The number of predictions over the time.

        Returns
        -------
        yhat : ndarray of floats
               The n-steps-ahead predicted values of the model.

        """
        if len(y) < self.max_lag:
            raise ValueError(
                "Insufficient initial condition elements! Expected at least"
                f" {self.max_lag} elements."
            )

        if X is not None:
            forecast_horizon = X.shape[0]
        else:
            forecast_horizon = forecast_horizon + self.max_lag

        yhat = np.zeros(forecast_horizon, dtype=float)
        yhat.fill(np.nan)
        yhat[: self.max_lag] = y[: self.max_lag, 0]

        i = self.max_lag

        while i < len(y):
            k = int(i - self.max_lag)
            if i + steps_ahead > len(y):
                steps_ahead = len(y) - i  # predicts the remaining values

            if self.model_type == "NARMAX":
                yhat[i : i + steps_ahead] = self._basis_function_predict(
                    X[k : i + steps_ahead],
                    y[k : i + steps_ahead],
                    forecast_horizon=forecast_horizon,
                )[-steps_ahead:].ravel()
            elif self.model_type == "NAR":
                yhat[i : i + steps_ahead] = self._basis_function_predict(
                    X=None,
                    y_initial=y[k : i + steps_ahead],
                    forecast_horizon=forecast_horizon,
                )[-forecast_horizon : -forecast_horizon + steps_ahead].ravel()
            elif self.model_type == "NFIR":
                yhat[i : i + steps_ahead] = self._basis_function_predict(
                    X=X[k : i + steps_ahead],
                    y_initial=y[k : i + steps_ahead],
                    forecast_horizon=forecast_horizon,
                )[-steps_ahead:].ravel()
            else:
                raise ValueError(
                    f"model_type must be NARMAX, NAR or NFIR. Got {self.model_type}"
                )

            i += steps_ahead

        return yhat[self.max_lag : :].reshape(-1, 1)

    def _basis_function_n_steps_horizon(self, X, y, steps_ahead, forecast_horizon):
        yhat = np.zeros(forecast_horizon, dtype=float)
        yhat.fill(np.nan)
        yhat[: self.max_lag] = y[: self.max_lag, 0]

        i = self.max_lag

        while i < len(y):
            k = int(i - self.max_lag)
            if i + steps_ahead > len(y):
                steps_ahead = len(y) - i  # predicts the remaining values

            if self.model_type == "NARMAX":
                yhat[i : i + steps_ahead] = self._basis_function_predict(
                    X[k : i + steps_ahead],
                    y[k : i + steps_ahead],
                    forecast_horizon,
                )[-forecast_horizon : -forecast_horizon + steps_ahead].ravel()
            elif self.model_type == "NAR":
                yhat[i : i + steps_ahead] = self._basis_function_predict(
                    X=None,
                    y_initial=y[k : i + steps_ahead],
                    forecast_horizon=forecast_horizon,
                )[-forecast_horizon : -forecast_horizon + steps_ahead].ravel()
            elif self.model_type == "NFIR":
                yhat[i : i + steps_ahead] = self._basis_function_predict(
                    X=X[k : i + steps_ahead],
                    y_initial=y[k : i + steps_ahead],
                    forecast_horizon=forecast_horizon,
                )[-forecast_horizon : -forecast_horizon + steps_ahead].ravel()
            else:
                raise ValueError(
                    f"model_type must be NARMAX, NAR or NFIR. Got {self.model_type}"
                )

            i += steps_ahead

        yhat = yhat.ravel()
        return yhat[self.max_lag : :].reshape(-1, 1)

fit(*, X=None, y=None)

Train a NARX Neural Network model.

This is an training pipeline that allows a friendly usage by the user. All the lagged features are built using the SysIdentPy classes and we use the fit method of the base estimator of the sklearn to fit the model.

Parameters:

Name Type Description Default
X ndarrays of floats

The input data to be used in the training process.

None
y ndarrays of floats

The output data to be used in the training process.

None

Returns:

Name Type Description
base_estimator sklearn estimator

The model fitted.

Source code in sysidentpy\general_estimators\narx.py
def fit(self, *, X=None, y=None):
    """Train a NARX Neural Network model.

    This is an training pipeline that allows a friendly usage
    by the user. All the lagged features are built using the
    SysIdentPy classes and we use the fit method of the base
    estimator of the sklearn to fit the model.

    Parameters
    ----------
    X : ndarrays of floats
        The input data to be used in the training process.
    y : ndarrays of floats
        The output data to be used in the training process.

    Returns
    -------
    base_estimator : sklearn estimator
        The model fitted.

    """
    if y is None:
        raise ValueError("y cannot be None")

    self.max_lag = self._get_max_lag()
    lagged_data = self.build_matrix(X, y)
    if self.basis_function.__class__.__name__ == "Polynomial":
        reg_matrix = self.basis_function.fit(
            lagged_data, self.max_lag, predefined_regressors=None
        )
    else:
        reg_matrix, self.ensemble = self.basis_function.fit(
            lagged_data, self.max_lag, predefined_regressors=None
        )

    if X is not None:
        self.n_inputs = _num_features(X)
    else:
        self.n_inputs = 1  # just to create the regressor space base

    self.regressor_code = self.regressor_space(self.n_inputs)
    self.final_model = self.regressor_code
    y = y[self.max_lag :].ravel()

    self.base_estimator.fit(reg_matrix, y, **self.fit_params)
    return self

narmax_n_step_ahead(X, y, steps_ahead)

n_steps ahead prediction method for NARMAX model

Source code in sysidentpy\general_estimators\narx.py
def narmax_n_step_ahead(self, X, y, steps_ahead):
    """n_steps ahead prediction method for NARMAX model"""
    if len(y) < self.max_lag:
        raise ValueError(
            "Insufficient initial condition elements! Expected at least"
            f" {self.max_lag} elements."
        )

    to_remove = int(np.ceil((len(y) - self.max_lag) / steps_ahead))
    X = X.reshape(-1, self.n_inputs)
    yhat = np.zeros(X.shape[0], dtype=float)
    yhat.fill(np.nan)
    yhat[: self.max_lag] = y[: self.max_lag, 0]
    i = self.max_lag
    steps = [step for step in range(0, to_remove * steps_ahead, steps_ahead)]
    if len(steps) > 1:
        for step in steps[:-1]:
            yhat[i : i + steps_ahead] = self._model_prediction(
                X=X[step : i + steps_ahead],
                y_initial=y[step:i],
            )[-steps_ahead:].ravel()
            i += steps_ahead

        steps_ahead = np.sum(np.isnan(yhat))
        yhat[i : i + steps_ahead] = self._model_prediction(
            X=X[steps[-1] : i + steps_ahead],
            y_initial=y[steps[-1] : i],
        )[-steps_ahead:].ravel()
    else:
        yhat[i : i + steps_ahead] = self._model_prediction(
            X=X[0 : i + steps_ahead],
            y_initial=y[0:i],
        )[-steps_ahead:].ravel()

    yhat = yhat.ravel()[self.max_lag : :]
    return yhat.reshape(-1, 1)

predict(*, X=None, y=None, steps_ahead=None, forecast_horizon=None)

Return the predicted given an input and initial values.

The predict function allows a friendly usage by the user. Given a trained model, predict values given a new set of data.

This method accept y values mainly for prediction n-steps ahead (to be implemented in the future).

Currently we only support infinity-steps-ahead prediction, but run 1-step-ahead prediction manually is straightforward.

Parameters:

Name Type Description Default
X ndarray of floats

The input data to be used in the prediction process.

None
y ndarray of floats

The output data to be used in the prediction process.

None
steps_ahead int(default=None)

The user can use free run simulation, one-step ahead prediction and n-step ahead prediction.

None
forecast_horizon int

The number of predictions over the time.

None

Returns:

Name Type Description
yhat ndarray of floats

The predicted values of the model.

Source code in sysidentpy\general_estimators\narx.py
def predict(self, *, X=None, y=None, steps_ahead=None, forecast_horizon=None):
    """Return the predicted given an input and initial values.

    The predict function allows a friendly usage by the user.
    Given a trained model, predict values given
    a new set of data.

    This method accept y values mainly for prediction n-steps ahead
    (to be implemented in the future).

    Currently we only support infinity-steps-ahead prediction,
    but run 1-step-ahead prediction manually is straightforward.

    Parameters
    ----------
    X : ndarray of floats
        The input data to be used in the prediction process.
    y : ndarray of floats
        The output data to be used in the prediction process.
    steps_ahead : int (default = None)
        The user can use free run simulation, one-step ahead prediction
        and n-step ahead prediction.
    forecast_horizon : int, default=None
        The number of predictions over the time.

    Returns
    -------
    yhat : ndarray of floats
        The predicted values of the model.

    """
    if self.basis_function.__class__.__name__ == "Polynomial":
        if steps_ahead is None:
            yhat = self._model_prediction(X, y, forecast_horizon=forecast_horizon)
            yhat = np.concatenate([y[: self.max_lag], yhat], axis=0)
            return yhat

        if steps_ahead == 1:
            yhat = self._one_step_ahead_prediction(X, y)
            yhat = np.concatenate([y[: self.max_lag], yhat], axis=0)
            return yhat

        _check_positive_int(steps_ahead, "steps_ahead")
        yhat = self._n_step_ahead_prediction(X, y, steps_ahead=steps_ahead)
        yhat = np.concatenate([y[: self.max_lag], yhat], axis=0)
        return yhat

    if steps_ahead is None:
        yhat = self._basis_function_predict(X, y, forecast_horizon=forecast_horizon)
        yhat = np.concatenate([y[: self.max_lag], yhat], axis=0)
        return yhat
    if steps_ahead == 1:
        yhat = self._one_step_ahead_prediction(X, y)
        yhat = np.concatenate([y[: self.max_lag], yhat], axis=0)
        return yhat

    yhat = self._basis_function_n_step_prediction(
        X, y, steps_ahead=steps_ahead, forecast_horizon=forecast_horizon
    )
    yhat = np.concatenate([y[: self.max_lag], yhat], axis=0)
    return yhat