Documentation for Neural NARX
¶
Utilities fo data validation.
check_dimension(x, y)
¶
Check if x and y have only real values.
If there is any string or object samples a ValueError is raised.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
x | ndarray of floats | The input data. | required |
y | ndarray of floats | The output data. | required |
Source code in sysidentpy/utils/check_arrays.py
check_infinity(x, y)
¶
Check that x and y have no NaN or Inf samples.
If there is any NaN or Inf samples a ValueError is raised.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
x | ndarray of floats | The input data. | required |
y | ndarray of floats | The output data. | required |
Source code in sysidentpy/utils/check_arrays.py
check_length(x, y)
¶
Check that x and y have the same number of samples.
If the length of x and y are different a ValueError is raised.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
x | ndarray of floats | The input data. | required |
y | ndarray of floats | The output data. | required |
Source code in sysidentpy/utils/check_arrays.py
check_linear_dependence_rows(psi)
¶
Check for linear dependence in the rows of the Psi matrix.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
psi | ndarray of floats | The information matrix of the model. | required |
Warns:
Type | Description |
---|---|
UserWarning | If the Psi matrix has linearly dependent rows. |
Source code in sysidentpy/utils/check_arrays.py
check_nan(x, y)
¶
Check that x and y have no NaN or Inf samples.
If there is any NaN or Inf samples a ValueError is raised.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
x | ndarray of floats | The input data. | required |
y | ndarray of floats | The output data. | required |
Source code in sysidentpy/utils/check_arrays.py
check_random_state(seed)
¶
Turn seed
into a np.random.RandomState
instance.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
seed | {None, int, `numpy.random.Generator`, |
If | required |
Returns:
Name | Type | Description |
---|---|---|
seed | {`numpy.random.Generator`, `numpy.random.RandomState`} | Random number generator. |
Source code in sysidentpy/utils/check_arrays.py
check_x_y(x, y)
¶
Validate input and output data using some crucial tests.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
x | ndarray of floats | The input data. | required |
y | ndarray of floats | The output data. | required |
Source code in sysidentpy/utils/check_arrays.py
deprecated(version, future_version=None, message=None, alternative=None, **kwargs)
¶
Decorate deprecated methods.
This decorator is adapted from astroML decorator: https://github.com/astroML/astroML/blob/f66558232f6d33cb34ecd1bed8a80b9db7ae1c30/astroML/utils/decorators.py#L120
Source code in sysidentpy/utils/deprecation.py
Display results formatted for the user.
results(final_model=None, theta=None, err=None, n_terms=None, theta_precision=4, err_precision=8, dtype='dec')
¶
Return the model regressors, parameters and ERR values.
Generates a formatted string matrix containing model regressors, their corresponding parameters, and error reduction ratio (ERR) values.
This function constructs a structured output where each row represents a model regressor, its estimated parameter, and the associated ERR value. The numerical values can be displayed in either decimal or scientific notation.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
final_model | array - like | The identified model structure, where each row corresponds to a regressor represented by numerical codes. | None |
theta | array - like | A column vector containing the estimated parameters for each regressor. | None |
err | array - like | A vector containing the error reduction ratio (ERR) values for each regressor. | None |
n_terms | int | Number of terms (regressors) in the model. | None |
theta_precision | int | Number of decimal places for displaying parameter values. | 4 |
err_precision | int | Number of decimal places for displaying ERR values. | 8 |
dtype | (dec, sci) | Format for displaying numerical values: - 'dec' : Decimal notation. - 'sci' : Scientific notation. | 'dec' |
Returns:
Name | Type | Description |
---|---|---|
output_matrix | list of lists | A structured matrix where: - The first column contains regressor representations as strings. - The second column contains the corresponding estimated parameter values. - The third column contains the associated ERR values. |
Raises:
Type | Description |
---|---|
ValueError | If |
Source code in sysidentpy/utils/display_results.py
12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 |
|
Utilities for data generation.
get_miso_data(n=5000, colored_noise=False, sigma=0.05, train_percentage=90)
¶
Generate synthetic data for Multiple-Input Single-Output system identification.
This function simulates input-output data for a nonlinear MISO system using two input signals. The system output is influenced by both inputs and can be affected by either white or colored (autoregressive) noise based on the colored_noise
flag.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
n | (int, optional(default=5000)) | Number of samples to generate. | 5000 |
colored_noise | (bool, optional(default=False)) | If True, adds colored (autoregressive) noise to the system; otherwise, white noise is used. | False |
sigma | (float, optional(default=0.05)) | Standard deviation of the noise distribution. | 0.05 |
train_percentage | (int, optional(default=90)) | Percentage of the dataset allocated for training. The remainder is used for validation. | 90 |
Returns:
Name | Type | Description |
---|---|---|
x_train | ndarray | Input data matrix (features) for system identification (training). |
x_valid | ndarray | Input data matrix (features) for system validation (testing). |
y_train | ndarray | Output data corresponding to |
y_valid | ndarray | Output data corresponding to |
Notes
- The system follows the nonlinear difference equation:
y[k] = 0.4 * y[k-1]² + 0.1 * y[k-1] * x1[k-1] + 0.6 * x2[k-1] - 0.3 * x1[k-1] * x2[k-2] + e[k]
where e[k]
is either white or colored noise.
- The inputs
x1
andx2
are independently sampled from a uniform distribution in the range [-1, 1]. - The dataset is split into training and validation sets based on
train_percentage
, ensuring a clear separation between them. - The function returns
x_train
andx_valid
as stacked arrays, where each row represents a sample and each column corresponds to an input variable (x1
orx2
).
Source code in sysidentpy/utils/generate_data.py
91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 |
|
get_siso_data(n=5000, colored_noise=False, sigma=0.05, train_percentage=90)
¶
Generate synthetic data for Single-Input Single-Output system identification.
This function simulates input-output data for a SISO system based on a predefined nonlinear difference equation. The system output is affected by either white noise or colored noise (autoregressive noise) depending on the colored_noise
flag.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
n | (int, optional(default=5000)) | Number of samples to generate. | 5000 |
colored_noise | (bool, optional(default=False)) | If True, adds colored (autoregressive) noise to the system; otherwise, white noise is used. | False |
sigma | (float, optional(default=0.05)) | Standard deviation of the noise distribution. | 0.05 |
train_percentage | (int, optional(default=90)) | Percentage of the dataset allocated for training. The rest is used for validation. | 90 |
Returns:
Name | Type | Description |
---|---|---|
x_train | ndarray | Input data for system identification (training). |
x_valid | ndarray | Input data for system validation (testing). |
y_train | ndarray | Output data corresponding to |
y_valid | ndarray | Output data corresponding to |
Notes
- The system follows the nonlinear difference equation:
y[k] = 0.2 * y[k-1] + 0.1 * y[k-1] * x[k-1] + 0.9 * x[k-2] + e[k]
where e[k]
is either white or colored noise.
- The input
x
is uniformly sampled from the range [-1, 1]. - The dataset is split based on
train_percentage
, ensuring a clear separation between training and validation data.
Source code in sysidentpy/utils/generate_data.py
build_input_matrix(x, xlag)
¶
Build the information matrix of input values.
Each column of the information matrix represents a candidate regressor. The set of candidate regressors are based on xlag, ylag, and degree entered by the user.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
x | array - like | Input data used during the training phase. | required |
xlag | int, list of int, or nested list of int | Input that can be a single integer, a list, or a nested list. | required |
Returns:
Type | Description |
---|---|
data = ndarray of floats | The lagged matrix built in respect with each lag and column. |
Source code in sysidentpy/utils/information_matrix.py
build_input_output_matrix(x, y, xlag, ylag)
¶
Build the information matrix.
Each column of the information matrix represents a candidate regressor. The set of candidate regressors are based on xlag, ylag, and degree entered by the user.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
x | array - like | Input data used on training phase. | required |
y | array - like | Target data used on training phase. | required |
xlag | int, list of int, or nested list of int | Input that can be a single integer, a list, or a nested list. | required |
ylag | int or list of int | The range of lags according to user definition. | required |
Returns:
Type | Description |
---|---|
data = ndarray of floats | The constructed information matrix. |
Source code in sysidentpy/utils/information_matrix.py
build_output_matrix(y, ylag)
¶
Build the information matrix of output values.
Each column of the information matrix represents a candidate regressor. The set of candidate regressors are based on xlag, ylag, and degree entered by the user.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
y | array - like | Output data used during the training phase. | required |
ylag | int or list of int | The range of lags according to user definition. | required |
Returns:
Type | Description |
---|---|
data = ndarray of floats | The constructed output regressor matrix. |
Source code in sysidentpy/utils/information_matrix.py
count_model_regressors(*, x, y, xlag, ylag, model_type, basis_function, is_neural_narx=False)
¶
Compute the number of model regressors after applying the basis function.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
x | ndarray | Input data. | required |
y | ndarray | Output data. | required |
xlag | int | Number of lags for input variables. | required |
ylag | int | Number of lags for output variables. | required |
model_type | str | The type of model ('NARMAX', 'NAR', 'NFIR', etc.). | required |
basis_function | object | The basis function used for feature transformation. | required |
is_neural_narx | bool | Whether to adjust for a neural NARX model, by default False. | False |
Returns:
Type | Description |
---|---|
int | The number of regressors/features after transformation. |
Source code in sysidentpy/utils/information_matrix.py
get_build_io_method(model_type)
¶
Get info criteria method.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
model_type | The type of the model (NARMAX, NAR or NFIR) | required |
Returns:
Type | Description |
---|---|
build_method = Self | Method to build the input-output matrix |
Source code in sysidentpy/utils/information_matrix.py
initial_lagged_matrix(x, y, xlag, ylag)
¶
Construct a matrix with lagged versions of input and output variables.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
x | array - like | Input data used during the training phase. | required |
y | array - like | Output data used during the training phase. | required |
xlag | int, list of int, or nested list of int | Input that can be a single integer, a list, or a nested list. | required |
ylag | int or list of int | The range of lags according to user definition. | required |
Returns:
Name | Type | Description |
---|---|---|
lagged_data | ndarray | The combined matrix containing lagged input and output values. |
Examples:
If xlag=2
and ylag=2
, the resulting matrix will contain columns: Y[k-1], Y[k-2], x[k-1], x[k-2].
Source code in sysidentpy/utils/information_matrix.py
shift_column(col_to_shift, lag)
¶
Shift an array by a specified lag, introducing zeros for missing values.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
col_to_shift | array-like of shape (n_samples,) | The input or output time-series data to be lagged. | required |
lag | int | The number of time steps to shift the data. | required |
Returns:
Name | Type | Description |
---|---|---|
tmp_column | ndarray of shape (n_samples, 1) | The shifted array, where the first |
Examples:
Source code in sysidentpy/utils/information_matrix.py
get_lag_from_regressor_code(regressors)
¶
Get the maximum lag from array of regressors.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
regressors | ndarray of int | Flattened list of input or output regressors. | required |
Returns:
Name | Type | Description |
---|---|---|
max_lag | int | Maximum lag of list of regressors. |
Source code in sysidentpy/utils/lags.py
get_max_lag_from_model_code(model_code)
¶
Create a flattened array of input regressors.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
model_code | ndarray of int | Model defined by the user to simulate. | required |
Returns:
Name | Type | Description |
---|---|---|
max_lag | int | Maximum lag of list of regressors. |
Source code in sysidentpy/utils/lags.py
get_max_xlag(xlag=1)
¶
Get maximum value from various xlag structures.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
xlag | int, list of int, or nested list of int | Input that can be a single integer, a list, or a nested list. | 1 |
Returns:
Type | Description |
---|---|
int | Maximum value found. |
Source code in sysidentpy/utils/lags.py
get_max_ylag(ylag=1)
¶
Get maximum ylag.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
ylag | ndarray of int | The range of lags according to user definition. | 1 |
Returns:
Name | Type | Description |
---|---|---|
ny | list | Maximum value of ylag. |
Source code in sysidentpy/utils/lags.py
Utils methods for NARMAX modeling.
regressor_code(*, X=None, xlag=2, ylag=2, model_type='NARMAX', model_representation=None, basis_function=Polynomial())
¶
Generate a regressor code based on the provided parameters.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
X | ndarray | The input feature matrix. | None |
xlag | int | The number of lags for the input features. | 2 |
ylag | int | The number of lags for the target variable. | 2 |
model_type | str | The type of model to be used. Default is "NARMAX". | 'NARMAX' |
model_representation | str | The model representation to be used. | None |
basis_function | object | The basis function object used to transform the regressor space. | Polynomial() |
Returns:
Name | Type | Description |
---|---|---|
encoding | ndarray | The generated regressor encoding. |
Source code in sysidentpy/utils/narmax_tools.py
set_weights(*, static_function=True, static_gain=True, start=-0.01, stop=-5, num=50, base=2.71)
¶
Set log-spaced weights assigned to each objective in the MO optimization.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
static_function | bool | Indicator for the presence of static function data. Default is True. | True |
static_gain | bool | Indicator for the presence of static gain data. Default is True. | True |
start | float | The starting exponent for the log-spaced weights. Default is -0.01. | -0.01 |
stop | float | The stopping exponent for the log-spaced weights. Default is -5. | -5 |
num | int | The number of weights to generate. Default is 50. | 50 |
base | float | The base of the logarithm used to generate weights. Default is 2.71. | 2.71 |
Returns:
Name | Type | Description |
---|---|---|
weights | ndarray of floats | An array containing the weights for each objective. |
Notes
This method calculates the weights to be assigned to different objectives in multi-objective optimization. The choice of weights depends on the presence of static function and static gain data. If both are present, a set of weights for dynamic, gain, and static objectives is computed. If either static function or static gain is absent, a simplified set of weights is generated.
Source code in sysidentpy/utils/narmax_tools.py
train_test_split(X, y, test_size=0.25)
¶
Split the time series dataset into training and testing sets.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
X | ndarray | The feature matrix. Can be None if there are no features. | required |
y | ndarray | The target vector. | required |
test_size | float | The proportion of the dataset to include in the test split. Default is 0.25. | 0.25 |
Returns:
Name | Type | Description |
---|---|---|
X_train | ndarray or None | The training set feature matrix, or None if x is None. |
X_test | ndarray or None | The testing set feature matrix, or None if x is None. |
y_train | ndarray | The training set target vector. |
y_test | ndarray | The testing set target vector. |
Source code in sysidentpy/utils/narmax_tools.py
Plotting methods.
plot_residues_correlation(data=None, *, figsize=(10, 6), n=100, style='default', facecolor='white', title='Residual Analysis', ylabel='Correlation')
¶
Plot the residual validation.
Source code in sysidentpy/utils/plotting.py
plot_results(y, *, yhat, n=100, title='Free run simulation', xlabel='Samples', ylabel='y, $\\hat{y}$', data_color='#1f77b4', model_color='#ff7f0e', marker='o', model_marker='*', linewidth=1.5, figsize=(10, 6), style='default', facecolor='white')
¶
Plot the results of a simulation.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
y | ndarray | True data values. | required |
yhat | ndarray | Model predictions. | required |
n | int | Number of samples to plot. | 100 |
title | str | Plot title. | 'Free run simulation' |
xlabel | str | Label for the x-axis. | 'Samples' |
ylabel | str | Label for the y-axis. | 'y, $\\hat{y}$' |
data_color | str | Color for the data line. | '#1f77b4' |
model_color | str | Color for the model line. | '#ff7f0e' |
marker | str | Marker style for the data line. | 'o' |
model_marker | str | Marker style for the model line. | '*' |
linewidth | float | Line width for both lines. | 1.5 |
figsize | Tuple[int, int] | Figure size (width, height). | (10, 6) |
style | str | Matplotlib style. | 'default' |
facecolor | str | Figure facecolor. | 'white' |
Source code in sysidentpy/utils/plotting.py
load_model(*, file_name='model', path=None)
¶
Load the model from file "file_name.syspy" located at path "path".
Parameters:
Name | Type | Description | Default |
---|---|---|---|
file_name | model to be loaded | 'model' | |
path | | None |
Returns:
Name | Type | Description |
---|---|---|
model_loaded | model loaded, as a variable, containing model and its attributes | |
Source code in sysidentpy/utils/save_load.py
save_model(*, model=None, file_name='model', path=None)
¶
Save the model "model" in folder "folder" using an extension .syspy.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
model | | None | |
file_name | | 'model' | |
path | | None |
Returns:
Type | Description |
---|---|
file file_name.syspy located at "path", containing the estimated model. | |
Source code in sysidentpy/utils/save_load.py
get_index_from_regressor_code(regressor_code, model_code)
¶
Get the index of user regressor in regressor space.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
regressor_code | ndarray of int | Matrix codification of all possible regressors. | required |
model_code | ndarray of int | Model defined by the user to simulate. | required |
Returns:
Name | Type | Description |
---|---|---|
model_index | ndarray of int | Index of model code in the regressor space. |
Source code in sysidentpy/utils/simulation.py
list_input_regressor_code(model_code)
¶
Create a flattened array of input regressors.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
model_code | ndarray of int | Model defined by the user to simulate. | required |
Returns:
Name | Type | Description |
---|---|---|
regressor_code | ndarray of int | Flattened list of output regressors. |
Source code in sysidentpy/utils/simulation.py
list_output_regressor_code(model_code)
¶
Create a flattened array of output regressors.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
model_code | ndarray of int | Model defined by the user to simulate. | required |
Returns:
Name | Type | Description |
---|---|---|
regressor_code | ndarray of int | Flattened list of output regressors. |