Skip to content

Documentation for Neural NARX

Utilities fo data validation.

check_dimension(x, y)

Check if x and y have only real values.

If there is any string or object samples a ValueError is raised.

Parameters:

Name Type Description Default
x ndarray of floats

The input data.

required
y ndarray of floats

The output data.

required
Source code in sysidentpy/utils/check_arrays.py
def check_dimension(x, y):
    """Check if x and y have only real values.

    If there is any string or object samples a ValueError is raised.

    Parameters
    ----------
    x : ndarray of floats
        The input data.
    y : ndarray of floats
        The output data.

    """
    if x.ndim == 0:
        raise ValueError(
            "Input must be a 2d array, got scalar instead. Reshape your data using"
            " array.reshape(-1, 1)"
        )

    if x.ndim == 1:
        raise ValueError(
            "Input must be a 2d array, got 1d array instead. "
            "Reshape your data using array.reshape(-1, 1)"
        )

    if y.ndim == 0:
        raise ValueError(
            "Output must be a 2d array, got scalar instead. "
            "Reshape your data using array.reshape(-1, 1)"
        )

    if y.ndim == 1:
        raise ValueError(
            "Output must be a 2d array, got 1d array instead. "
            "Reshape your data using array.reshape(-1, 1)"
        )

check_infinity(x, y)

Check that x and y have no NaN or Inf samples.

If there is any NaN or Inf samples a ValueError is raised.

Parameters:

Name Type Description Default
x ndarray of floats

The input data.

required
y ndarray of floats

The output data.

required
Source code in sysidentpy/utils/check_arrays.py
def check_infinity(x, y):
    """Check that x and y have no NaN or Inf samples.

    If there is any NaN or Inf samples a ValueError is raised.

    Parameters
    ----------
    x : ndarray of floats
        The input data.
    y : ndarray of floats
        The output data.

    """
    if np.isinf(x).any():
        msg_error = (
            "Input contains invalid values (e.g. NaN, Inf) on "
            f"index {np.argwhere(np.isinf(x))}"
        )
        raise ValueError(msg_error)

    if np.isinf(y).any():
        msg_error = (
            "Output contains invalid values (e.g Inf) on "
            f"index {np.argwhere(np.isinf(y))}"
        )
        raise ValueError(msg_error)

check_length(x, y)

Check that x and y have the same number of samples.

If the length of x and y are different a ValueError is raised.

Parameters:

Name Type Description Default
x ndarray of floats

The input data.

required
y ndarray of floats

The output data.

required
Source code in sysidentpy/utils/check_arrays.py
def check_length(x, y):
    """Check that x and y have the same number of samples.

    If the length of x and y are different a ValueError is raised.

    Parameters
    ----------
    x : ndarray of floats
        The input data.
    y : ndarray of floats
        The output data.

    """
    if x.shape[0] != y.shape[0]:
        msg_error = (
            "Input and output data must have the same number of "
            f"samples. x has dimension {x.shape} and "
            f"y has dimension {y.shape}"
        )
        raise ValueError(msg_error)

check_linear_dependence_rows(psi)

Check for linear dependence in the rows of the Psi matrix.

Parameters:

Name Type Description Default
psi ndarray of floats

The information matrix of the model.

required

Warns:

Type Description
UserWarning

If the Psi matrix has linearly dependent rows.

Source code in sysidentpy/utils/check_arrays.py
def check_linear_dependence_rows(psi):
    """Check for linear dependence in the rows of the Psi matrix.

    Parameters
    ----------
    psi : ndarray of floats
        The information matrix of the model.

    Warns
    -----
    UserWarning
        If the Psi matrix has linearly dependent rows.
    """
    if np.linalg.matrix_rank(psi) != psi.shape[1]:
        warn(
            "Psi matrix might have linearly dependent rows."
            "Be careful and check your data",
            stacklevel=2,
        )

check_nan(x, y)

Check that x and y have no NaN or Inf samples.

If there is any NaN or Inf samples a ValueError is raised.

Parameters:

Name Type Description Default
x ndarray of floats

The input data.

required
y ndarray of floats

The output data.

required
Source code in sysidentpy/utils/check_arrays.py
def check_nan(x, y):
    """Check that x and y have no NaN or Inf samples.

    If there is any NaN or Inf samples a ValueError is raised.

    Parameters
    ----------
    x : ndarray of floats
        The input data.
    y : ndarray of floats
        The output data.

    """
    if np.isnan(x).any():
        msg_error = (
            "Input contains invalid values (e.g. NaN, Inf) on "
            f"index {np.argwhere(np.isnan(x))}"
        )
        raise ValueError(msg_error)

    if not ~np.isnan(y).any():
        msg_error = (
            "Output contains invalid values (e.g. NaN, Inf) on "
            f"index {np.argwhere(np.isnan(y))}"
        )
        raise ValueError(msg_error)

check_random_state(seed)

Turn seed into a np.random.RandomState instance.

Parameters:

Name Type Description Default
seed {None, int, `numpy.random.Generator`,
`numpy.random.RandomState`}, optional

If seed is None (or np.random), the numpy.random.RandomState singleton is used. If seed is an int, a new RandomState instance is used, seeded with seed. If seed is already a Generator or RandomState instance then that instance is used.

required

Returns:

Name Type Description
seed {`numpy.random.Generator`, `numpy.random.RandomState`}

Random number generator.

Source code in sysidentpy/utils/check_arrays.py
def check_random_state(seed):
    """Turn `seed` into a `np.random.RandomState` instance.

    Parameters
    ----------
    seed : {None, int, `numpy.random.Generator`,
            `numpy.random.RandomState`}, optional
        If `seed` is None (or `np.random`), the `numpy.random.RandomState`
        singleton is used.
        If `seed` is an int, a new ``RandomState`` instance is used,
        seeded with `seed`.
        If `seed` is already a ``Generator`` or ``RandomState`` instance then
        that instance is used.

    Returns
    -------
    seed : {`numpy.random.Generator`, `numpy.random.RandomState`}
        Random number generator.

    """
    if seed is None or seed is np.random:
        return np.random.mtrand._rand
    if isinstance(seed, (numbers.Integral, np.integer)):
        return np.random.default_rng(seed)
    if isinstance(seed, (np.random.RandomState, np.random.Generator)):
        return seed

    raise ValueError(
        "%r cannot be used to seed a numpy.random.RandomState instance" % seed
    )

check_x_y(x, y)

Validate input and output data using some crucial tests.

Parameters:

Name Type Description Default
x ndarray of floats

The input data.

required
y ndarray of floats

The output data.

required
Source code in sysidentpy/utils/check_arrays.py
def check_x_y(x, y):
    """Validate input and output data using some crucial tests.

    Parameters
    ----------
    x : ndarray of floats
        The input data.
    y : ndarray of floats
        The output data.

    """
    check_length(x, y)
    check_dimension(x, y)
    check_infinity(x, y)
    check_nan(x, y)

deprecated(version, future_version=None, message=None, alternative=None, **kwargs)

Decorate deprecated methods.

This decorator is adapted from astroML decorator: https://github.com/astroML/astroML/blob/f66558232f6d33cb34ecd1bed8a80b9db7ae1c30/astroML/utils/decorators.py#L120

Source code in sysidentpy/utils/deprecation.py
def deprecated(version, future_version=None, message=None, alternative=None, **kwargs):
    """Decorate deprecated methods.

    This decorator is adapted from astroML decorator:
    https://github.com/astroML/astroML/blob/f66558232f6d33cb34ecd1bed8a80b9db7ae1c30/astroML/utils/decorators.py#L120

    """

    def deprecate_function(
        func,
        version=version,
        future_version=future_version,
        message=message,
        alternative=alternative,
    ):
        if message is None:
            message = f"Function {func.__name__} has been deprecated since {version}."
            if alternative is not None:
                message += (
                    f"\n You'll have to use {alternative} instead."
                    "This module was deprecated in favor of "
                    f"{alternative} module into which all the refactored "
                    "classes and functions are moved."
                )
            if future_version is not None:
                message += (
                    f"\n This change will be applied in version {future_version}."
                )

        @functools.wraps(func)
        def deprecated_func(*args, **kwargs):
            warnings.warn(message, FutureWarning, stacklevel=1)
            return func(*args, **kwargs)

        return deprecated_func

    def deprecate_class(
        cls,
        version=version,
        future_version=future_version,
        message=message,
        alternative=alternative,
    ):
        if message is None:
            message = f"Class {cls.__name__} has been deprecated since {version}."
            if alternative is not None:
                message += alternative
            if future_version is not None:
                message += (
                    f"\n This change will be applied in version {future_version}."
                )

        cls.__init__ = deprecate_function(cls.__init__, message=message)

        return cls

    def deprecate_warning(obj):
        if isinstance(obj, type):
            return deprecate_class(obj)

        return deprecate_function(obj)

    return deprecate_warning

Display results formatted for the user.

results(final_model=None, theta=None, err=None, n_terms=None, theta_precision=4, err_precision=8, dtype='dec')

Return the model regressors, parameters and ERR values.

Generates a formatted string matrix containing model regressors, their corresponding parameters, and error reduction ratio (ERR) values.

This function constructs a structured output where each row represents a model regressor, its estimated parameter, and the associated ERR value. The numerical values can be displayed in either decimal or scientific notation.

Parameters:

Name Type Description Default
final_model array - like

The identified model structure, where each row corresponds to a regressor represented by numerical codes.

None
theta array - like

A column vector containing the estimated parameters for each regressor.

None
err array - like

A vector containing the error reduction ratio (ERR) values for each regressor.

None
n_terms int

Number of terms (regressors) in the model.

None
theta_precision int

Number of decimal places for displaying parameter values.

4
err_precision int

Number of decimal places for displaying ERR values.

8
dtype (dec, sci)

Format for displaying numerical values: - 'dec' : Decimal notation. - 'sci' : Scientific notation.

'dec'

Returns:

Name Type Description
output_matrix list of lists

A structured matrix where: - The first column contains regressor representations as strings. - The second column contains the corresponding estimated parameter values. - The third column contains the associated ERR values.

Raises:

Type Description
ValueError

If theta_precision or err_precision is not a positive integer. If dtype is not 'dec' or 'sci'.

Source code in sysidentpy/utils/display_results.py
def results(
    final_model=None,
    theta=None,
    err=None,
    n_terms=None,
    theta_precision=4,
    err_precision=8,
    dtype="dec",
):
    """Return the model regressors, parameters and ERR values.

    Generates a formatted string matrix containing model regressors,
    their corresponding parameters, and error reduction ratio (ERR) values.

    This function constructs a structured output where each row represents
    a model regressor, its estimated parameter, and the associated ERR value.
    The numerical values can be displayed in either decimal or scientific notation.

    Parameters
    ----------
    final_model : array-like, optional
        The identified model structure, where each row corresponds to
        a regressor represented by numerical codes.

    theta : array-like, optional
        A column vector containing the estimated parameters for each regressor.

    err : array-like, optional
        A vector containing the error reduction ratio (ERR) values for each regressor.

    n_terms : int, optional
        Number of terms (regressors) in the model.

    theta_precision : int, default=4
        Number of decimal places for displaying parameter values.

    err_precision : int, default=8
        Number of decimal places for displaying ERR values.

    dtype : {'dec', 'sci'}, default='dec'
        Format for displaying numerical values:
        - 'dec' : Decimal notation.
        - 'sci' : Scientific notation.

    Returns
    -------
    output_matrix : list of lists
        A structured matrix where:
        - The first column contains regressor representations as strings.
        - The second column contains the corresponding estimated parameter values.
        - The third column contains the associated ERR values.

    Raises
    ------
    ValueError
        If `theta_precision` or `err_precision` is not a positive integer.
        If `dtype` is not 'dec' or 'sci'.

    """
    if not isinstance(theta_precision, int) or theta_precision < 1:
        raise ValueError(
            f"theta_precision must be integer and > zero. Got {theta_precision}."
        )

    if not isinstance(err_precision, int) or err_precision < 1:
        raise ValueError(
            f"err_precision must be integer and > zero. Got {err_precision}."
        )

    if dtype not in ("dec", "sci"):
        raise ValueError(f"dtype must be dec or sci. Got {dtype}.")

    output_matrix = []
    theta_output_format = "{:." + str(theta_precision)
    err_output_format = "{:." + str(err_precision)

    if dtype == "dec":
        theta_output_format = theta_output_format + "f}"
        err_output_format = err_output_format + "f}"
    else:
        theta_output_format = theta_output_format + "E}"
        err_output_format = err_output_format + "E}"

    for i in range(n_terms):
        if np.max(final_model[i]) < 1:
            tmp_regressor = str(1)
        else:
            regressor_dic = Counter(final_model[i])
            regressor_string = []
            for j in range(len(list(regressor_dic.keys()))):
                regressor_key = list(regressor_dic.keys())[j]
                if regressor_key < 1:
                    translated_key = ""
                    translated_exponent = ""
                else:
                    delay_string = str(
                        int(regressor_key - np.floor(regressor_key / 1000) * 1000)
                    )
                    if int(regressor_key / 1000) < 2:
                        translated_key = "y(k-" + delay_string + ")"
                    else:
                        translated_key = (
                            "x"
                            + str(int(regressor_key / 1000) - 1)
                            + "(k-"
                            + delay_string
                            + ")"
                        )
                    if regressor_dic[regressor_key] < 2:
                        translated_exponent = ""
                    else:
                        translated_exponent = "^" + str(regressor_dic[regressor_key])
                regressor_string.append(translated_key + translated_exponent)
            tmp_regressor = "".join(regressor_string)

        current_parameter = theta_output_format.format(theta[i, 0])
        current_err = err_output_format.format(err[i])
        current_output = [tmp_regressor, current_parameter, current_err]
        output_matrix.append(current_output)

    return output_matrix

Utilities for data generation.

get_miso_data(n=5000, colored_noise=False, sigma=0.05, train_percentage=90)

Generate synthetic data for Multiple-Input Single-Output system identification.

This function simulates input-output data for a nonlinear MISO system using two input signals. The system output is influenced by both inputs and can be affected by either white or colored (autoregressive) noise based on the colored_noise flag.

Parameters:

Name Type Description Default
n (int, optional(default=5000))

Number of samples to generate.

5000
colored_noise (bool, optional(default=False))

If True, adds colored (autoregressive) noise to the system; otherwise, white noise is used.

False
sigma (float, optional(default=0.05))

Standard deviation of the noise distribution.

0.05
train_percentage (int, optional(default=90))

Percentage of the dataset allocated for training. The remainder is used for validation.

90

Returns:

Name Type Description
x_train ndarray

Input data matrix (features) for system identification (training).

x_valid ndarray

Input data matrix (features) for system validation (testing).

y_train ndarray

Output data corresponding to x_train.

y_valid ndarray

Output data corresponding to x_valid.

Notes
  • The system follows the nonlinear difference equation:

y[k] = 0.4 * y[k-1]² + 0.1 * y[k-1] * x1[k-1] + 0.6 * x2[k-1] - 0.3 * x1[k-1] * x2[k-2] + e[k]

where e[k] is either white or colored noise.

  • The inputs x1 and x2 are independently sampled from a uniform distribution in the range [-1, 1].
  • The dataset is split into training and validation sets based on train_percentage , ensuring a clear separation between them.
  • The function returns x_train and x_valid as stacked arrays, where each row represents a sample and each column corresponds to an input variable (x1 or x2).
Source code in sysidentpy/utils/generate_data.py
def get_miso_data(n=5000, colored_noise=False, sigma=0.05, train_percentage=90):
    """Generate synthetic data for Multiple-Input Single-Output system identification.

    This function simulates input-output data for a nonlinear MISO system using two
    input signals. The system output is influenced by both inputs and can be affected
    by either white or colored (autoregressive) noise based on the `colored_noise` flag.

    Parameters
    ----------
    n : int, optional (default=5000)
        Number of samples to generate.
    colored_noise : bool, optional (default=False)
        If True, adds colored (autoregressive) noise to the system; otherwise, white
        noise is used.
    sigma : float, optional (default=0.05)
        Standard deviation of the noise distribution.
    train_percentage : int, optional (default=90)
        Percentage of the dataset allocated for training. The remainder is used
        for validation.

    Returns
    -------
    x_train : ndarray
        Input data matrix (features) for system identification (training).
    x_valid : ndarray
        Input data matrix (features) for system validation (testing).
    y_train : ndarray
        Output data corresponding to `x_train`.
    y_valid : ndarray
        Output data corresponding to `x_valid`.

    Notes
    -----
    - The system follows the nonlinear difference equation:

      y[k] = 0.4 * y[k-1]² + 0.1 * y[k-1] * x1[k-1] + 0.6 * x2[k-1]
             - 0.3 * x1[k-1] * x2[k-2] + e[k]

      where `e[k]` is either white or colored noise.

    - The inputs `x1` and `x2` are independently sampled from a uniform distribution in
      the range [-1, 1].
    - The dataset is split into training and validation sets based on `train_percentage`
      , ensuring a clear separation between them.
    - The function returns `x_train` and `x_valid` as stacked arrays, where each row
      represents a sample and each column corresponds to an input variable
      (`x1` or `x2`).

    """
    if train_percentage < 0 or train_percentage > 100:
        raise ValueError("train_percentage must be smaller than 100")

    mu = 0  # mean of the distribution
    nu = np.random.normal(mu, sigma, n).T
    e = np.zeros((n, 1))

    lag = 2
    if colored_noise is True:
        for k in range(lag, len(e)):
            e[k] = 0.8 * nu[k - 1] + nu[k]
    else:
        e = nu

    x1 = np.random.uniform(-1, 1, n).T
    x2 = np.random.uniform(-1, 1, n).T
    y = np.zeros((n, 1))
    theta = np.array([[0.4], [0.1], [0.6], [-0.3]])

    lag = 2
    for k in range(lag, len(e)):
        y[k] = (
            theta[0] * y[k - 1] ** 2
            + theta[1] * y[k - 1] * x1[k - 1]
            + theta[2] * x2[k - 1]
            + theta[3] * x1[k - 1] * x2[k - 2]
            + e[k]
        )

    split_data = int(len(x1) * (train_percentage / 100))
    x1_train = x1[0:split_data].reshape(-1, 1)
    x2_train = x2[0:split_data].reshape(-1, 1)
    x1_valid = x1[split_data::].reshape(-1, 1)
    x2_valid = x2[split_data::].reshape(-1, 1)

    x_train = np.hstack([x1_train, x2_train])
    x_valid = np.hstack([x1_valid, x2_valid])

    y_train = y[0:split_data].reshape(-1, 1)
    y_valid = y[split_data::].reshape(-1, 1)

    return x_train, x_valid, y_train, y_valid

get_siso_data(n=5000, colored_noise=False, sigma=0.05, train_percentage=90)

Generate synthetic data for Single-Input Single-Output system identification.

This function simulates input-output data for a SISO system based on a predefined nonlinear difference equation. The system output is affected by either white noise or colored noise (autoregressive noise) depending on the colored_noise flag.

Parameters:

Name Type Description Default
n (int, optional(default=5000))

Number of samples to generate.

5000
colored_noise (bool, optional(default=False))

If True, adds colored (autoregressive) noise to the system; otherwise, white noise is used.

False
sigma (float, optional(default=0.05))

Standard deviation of the noise distribution.

0.05
train_percentage (int, optional(default=90))

Percentage of the dataset allocated for training. The rest is used for validation.

90

Returns:

Name Type Description
x_train ndarray

Input data for system identification (training).

x_valid ndarray

Input data for system validation (testing).

y_train ndarray

Output data corresponding to x_train.

y_valid ndarray

Output data corresponding to x_valid.

Notes
  • The system follows the nonlinear difference equation:

y[k] = 0.2 * y[k-1] + 0.1 * y[k-1] * x[k-1] + 0.9 * x[k-2] + e[k]

where e[k] is either white or colored noise.

  • The input x is uniformly sampled from the range [-1, 1].
  • The dataset is split based on train_percentage, ensuring a clear separation between training and validation data.
Source code in sysidentpy/utils/generate_data.py
def get_siso_data(n=5000, colored_noise=False, sigma=0.05, train_percentage=90):
    r"""Generate synthetic data for Single-Input Single-Output system identification.

    This function simulates input-output data for a SISO system based on a predefined
    nonlinear difference equation. The system output is affected by either white noise
    or colored noise (autoregressive noise) depending on the `colored_noise` flag.

    Parameters
    ----------
    n : int, optional (default=5000)
        Number of samples to generate.
    colored_noise : bool, optional (default=False)
        If True, adds colored (autoregressive) noise to the system; otherwise, white
        noise is used.
    sigma : float, optional (default=0.05)
        Standard deviation of the noise distribution.
    train_percentage : int, optional (default=90)
        Percentage of the dataset allocated for training. The rest is used for
        validation.

    Returns
    -------
    x_train : ndarray
        Input data for system identification (training).
    x_valid : ndarray
        Input data for system validation (testing).
    y_train : ndarray
        Output data corresponding to `x_train`.
    y_valid : ndarray
        Output data corresponding to `x_valid`.

    Notes
    -----
    - The system follows the nonlinear difference equation:

      y[k] = 0.2 * y[k-1] + 0.1 * y[k-1] * x[k-1] + 0.9 * x[k-2] + e[k]

      where `e[k]` is either white or colored noise.

    - The input `x` is uniformly sampled from the range [-1, 1].
    - The dataset is split based on `train_percentage`, ensuring a clear separation
      between training and validation data.

    """
    if train_percentage < 0 or train_percentage > 100:
        raise ValueError("train_percentage must be smaller than 100")

    mu = 0  # mean of the distribution
    nu = np.random.normal(mu, sigma, n).T
    e = np.zeros((n, 1))

    lag = 2
    if colored_noise is True:
        for k in range(lag, len(e)):
            e[k] = 0.8 * nu[k - 1] + nu[k]
    else:
        e = nu

    x = np.random.uniform(-1, 1, n).T
    y = np.zeros((n, 1))
    theta = np.array([[0.2], [0.1], [0.9]])
    lag = 2
    for k in range(lag, len(x)):
        y[k] = (
            theta[0] * y[k - 1]
            + theta[1] * y[k - 1] * x[k - 1]
            + theta[2] * x[k - 2]
            + e[k]
        )

    split_data = int(len(x) * (train_percentage / 100))

    x_train = x[0:split_data].reshape(-1, 1)
    x_valid = x[split_data::].reshape(-1, 1)

    y_train = y[0:split_data].reshape(-1, 1)
    y_valid = y[split_data::].reshape(-1, 1)

    return x_train, x_valid, y_train, y_valid

build_input_matrix(x, xlag)

Build the information matrix of input values.

Each column of the information matrix represents a candidate regressor. The set of candidate regressors are based on xlag, ylag, and degree entered by the user.

Parameters:

Name Type Description Default
x array - like

Input data used during the training phase.

required
xlag int, list of int, or nested list of int

Input that can be a single integer, a list, or a nested list.

required

Returns:

Type Description
data = ndarray of floats

The lagged matrix built in respect with each lag and column.

Source code in sysidentpy/utils/information_matrix.py
def build_input_matrix(x, xlag: np.ndarray) -> np.ndarray:
    """Build the information matrix of input values.

    Each column of the information matrix represents a candidate
    regressor. The set of candidate regressors are based on xlag,
    ylag, and degree entered by the user.

    Parameters
    ----------
    x : array-like
        Input data used during the training phase.
    xlag : int, list of int, or nested list of int
        Input that can be a single integer, a list, or a nested list.

    Returns
    -------
    data = ndarray of floats
        The lagged matrix built in respect with each lag and column.

    """
    # Generate a lagged data which each column is a input or output
    # related to its respective lags. With this approach we can create
    # the information matrix by using all possible combination of
    # the columns as a product in the iterations

    n_inputs, xlag = _process_xlag(x, xlag)
    x_lagged = _create_lagged_x(x, n_inputs, xlag)
    constant = np.ones([x_lagged.shape[0], 1])
    data = np.concatenate([constant, x_lagged], axis=1)
    return data

build_input_output_matrix(x, y, xlag, ylag)

Build the information matrix.

Each column of the information matrix represents a candidate regressor. The set of candidate regressors are based on xlag, ylag, and degree entered by the user.

Parameters:

Name Type Description Default
x array - like

Input data used on training phase.

required
y array - like

Target data used on training phase.

required
xlag int, list of int, or nested list of int

Input that can be a single integer, a list, or a nested list.

required
ylag int or list of int

The range of lags according to user definition.

required

Returns:

Type Description
data = ndarray of floats

The constructed information matrix.

Source code in sysidentpy/utils/information_matrix.py
def build_input_output_matrix(x: np.ndarray, y: np.ndarray, xlag, ylag) -> np.ndarray:
    """Build the information matrix.

    Each column of the information matrix represents a candidate
    regressor. The set of candidate regressors are based on xlag,
    ylag, and degree entered by the user.

    Parameters
    ----------
    x : array-like
        Input data used on training phase.
    y : array-like
        Target data used on training phase.
    xlag : int, list of int, or nested list of int
        Input that can be a single integer, a list, or a nested list.
    ylag : int or list of int
        The range of lags according to user definition.

    Returns
    -------
    data = ndarray of floats
        The constructed information matrix.

    """
    # Generate a lagged data which each column is a input or output
    # related to its respective lags. With this approach we can create
    # the information matrix by using all possible combination of
    # the columns as a product in the iterations
    lagged_data = initial_lagged_matrix(x, y, xlag, ylag)
    constant = np.ones([lagged_data.shape[0], 1])
    data = np.concatenate([constant, lagged_data], axis=1)
    return data

build_output_matrix(y, ylag)

Build the information matrix of output values.

Each column of the information matrix represents a candidate regressor. The set of candidate regressors are based on xlag, ylag, and degree entered by the user.

Parameters:

Name Type Description Default
y array - like

Output data used during the training phase.

required
ylag int or list of int

The range of lags according to user definition.

required

Returns:

Type Description
data = ndarray of floats

The constructed output regressor matrix.

Source code in sysidentpy/utils/information_matrix.py
def build_output_matrix(y, ylag: np.ndarray) -> np.ndarray:
    """Build the information matrix of output values.

    Each column of the information matrix represents a candidate
    regressor. The set of candidate regressors are based on xlag,
    ylag, and degree entered by the user.

    Parameters
    ----------
    y : array-like
        Output data used during the training phase.
    ylag : int or list of int
        The range of lags according to user definition.

    Returns
    -------
    data = ndarray of floats
        The constructed output regressor matrix.

    """
    # Generate a lagged data which each column is an input or output
    # related to its respective lags. With this approach we can create
    # the information matrix by using all possible combination of
    # the columns as a product in the iterations
    ylag = _process_ylag(ylag)
    y_lagged = _create_lagged_y(y, ylag)
    constant = np.ones([y_lagged.shape[0], 1])
    data = np.concatenate([constant, y_lagged], axis=1)
    return data

count_model_regressors(*, x, y, xlag, ylag, model_type, basis_function, is_neural_narx=False)

Compute the number of model regressors after applying the basis function.

Parameters:

Name Type Description Default
x ndarray

Input data.

required
y ndarray

Output data.

required
xlag int

Number of lags for input variables.

required
ylag int

Number of lags for output variables.

required
model_type str

The type of model ('NARMAX', 'NAR', 'NFIR', etc.).

required
basis_function object

The basis function used for feature transformation.

required
is_neural_narx bool

Whether to adjust for a neural NARX model, by default False.

False

Returns:

Type Description
int

The number of regressors/features after transformation.

Source code in sysidentpy/utils/information_matrix.py
def count_model_regressors(
    *,
    x: np.ndarray,
    y: np.ndarray,
    xlag: int,
    ylag: int,
    model_type: str,
    basis_function,
    is_neural_narx: bool = False,
) -> int:
    """
    Compute the number of model regressors after applying the basis function.

    Parameters
    ----------
    x : np.ndarray
        Input data.
    y : np.ndarray
        Output data.
    xlag : int
        Number of lags for input variables.
    ylag : int
        Number of lags for output variables.
    model_type : str
        The type of model ('NARMAX', 'NAR', 'NFIR', etc.).
    basis_function : object
        The basis function used for feature transformation.
    is_neural_narx : bool, optional
        Whether to adjust for a neural NARX model, by default False.

    Returns
    -------
    int
        The number of regressors/features after transformation.
    """
    data = build_lagged_matrix(x, y, xlag, ylag, model_type)
    n_features = basis_function.fit(data[:3, :]).shape[1]
    if is_neural_narx:
        return n_features - 1

    return n_features

get_build_io_method(model_type)

Get info criteria method.

Parameters:

Name Type Description Default
model_type

The type of the model (NARMAX, NAR or NFIR)

required

Returns:

Type Description
build_method = Self

Method to build the input-output matrix

Source code in sysidentpy/utils/information_matrix.py
def get_build_io_method(model_type):
    """Get info criteria method.

    Parameters
    ----------
    model_type = str
        The type of the model (NARMAX, NAR or NFIR)

    Returns
    -------
    build_method = Self
        Method to build the input-output matrix
    """
    build_matrix_options = {
        "NARMAX": build_input_output_matrix,
        "NFIR": build_input_matrix,
        "NAR": build_output_matrix,
    }
    return build_matrix_options.get(model_type, None)

initial_lagged_matrix(x, y, xlag, ylag)

Construct a matrix with lagged versions of input and output variables.

Parameters:

Name Type Description Default
x array - like

Input data used during the training phase.

required
y array - like

Output data used during the training phase.

required
xlag int, list of int, or nested list of int

Input that can be a single integer, a list, or a nested list.

required
ylag int or list of int

The range of lags according to user definition.

required

Returns:

Name Type Description
lagged_data ndarray

The combined matrix containing lagged input and output values.

Examples:

If xlag=2 and ylag=2, the resulting matrix will contain columns: Y[k-1], Y[k-2], x[k-1], x[k-2].

Source code in sysidentpy/utils/information_matrix.py
def initial_lagged_matrix(x: np.ndarray, y: np.ndarray, xlag, ylag) -> np.ndarray:
    """Construct a matrix with lagged versions of input and output variables.

    Parameters
    ----------
    x : array-like
        Input data used during the training phase.
    y : array-like
        Output data used during the training phase.
    xlag : int, list of int, or nested list of int
        Input that can be a single integer, a list, or a nested list.
    ylag : int or list of int
        The range of lags according to user definition.

    Returns
    -------
    lagged_data : ndarray
        The combined matrix containing lagged input and output values.

    Examples
    --------
    If `xlag=2` and `ylag=2`, the resulting matrix will contain columns:
    Y[k-1], Y[k-2], x[k-1], x[k-2].

    """
    n_inputs, xlag = _process_xlag(x, xlag)
    ylag = _process_ylag(ylag)
    x_lagged = _create_lagged_x(x, n_inputs, xlag)
    y_lagged = _create_lagged_y(y, ylag)
    lagged_data = np.concatenate([y_lagged, x_lagged], axis=1)
    return lagged_data

shift_column(col_to_shift, lag)

Shift an array by a specified lag, introducing zeros for missing values.

Parameters:

Name Type Description Default
col_to_shift array-like of shape (n_samples,)

The input or output time-series data to be lagged.

required
lag int

The number of time steps to shift the data.

required

Returns:

Name Type Description
tmp_column ndarray of shape (n_samples, 1)

The shifted array, where the first lag values are replaced with zeros.

Examples:

>>> y = np.array([1, 2, 3, 4, 5])
>>> shift_column(y, 1)
array([[0],
       [1],
       [2],
       [3],
       [4]])
Source code in sysidentpy/utils/information_matrix.py
def shift_column(col_to_shift: np.ndarray, lag: int) -> np.ndarray:
    """Shift an array by a specified lag, introducing zeros for missing values.

    Parameters
    ----------
    col_to_shift : array-like of shape (n_samples,)
        The input or output time-series data to be lagged.
    lag : int
        The number of time steps to shift the data.

    Returns
    -------
    tmp_column : ndarray of shape (n_samples, 1)
        The shifted array, where the first `lag` values are replaced with zeros.

    Examples
    --------
    >>> y = np.array([1, 2, 3, 4, 5])
    >>> shift_column(y, 1)
    array([[0],
           [1],
           [2],
           [3],
           [4]])

    """
    n_samples = col_to_shift.shape[0]
    tmp_column = np.zeros((n_samples, 1))
    aux = col_to_shift[0 : n_samples - lag].reshape(-1, 1)
    tmp_column[lag:, 0] = aux[:, 0]
    return tmp_column

get_lag_from_regressor_code(regressors)

Get the maximum lag from array of regressors.

Parameters:

Name Type Description Default
regressors ndarray of int

Flattened list of input or output regressors.

required

Returns:

Name Type Description
max_lag int

Maximum lag of list of regressors.

Source code in sysidentpy/utils/lags.py
def get_lag_from_regressor_code(regressors):
    """Get the maximum lag from array of regressors.

    Parameters
    ----------
    regressors : ndarray of int
        Flattened list of input or output regressors.

    Returns
    -------
    max_lag : int
        Maximum lag of list of regressors.

    """
    lag_list = [int(i) for i in regressors.astype("str") for i in [np.sum(int(i[2:]))]]
    if len(lag_list) != 0:
        return max(lag_list)

    return 1

get_max_lag_from_model_code(model_code)

Create a flattened array of input regressors.

Parameters:

Name Type Description Default
model_code ndarray of int

Model defined by the user to simulate.

required

Returns:

Name Type Description
max_lag int

Maximum lag of list of regressors.

Source code in sysidentpy/utils/lags.py
def get_max_lag_from_model_code(model_code: List[int]) -> int:
    """Create a flattened array of input regressors.

    Parameters
    ----------
    model_code : ndarray of int
        Model defined by the user to simulate.

    Returns
    -------
    max_lag : int
        Maximum lag of list of regressors.

    """
    xlag_code = list_input_regressor_code(model_code)
    ylag_code = list_output_regressor_code(model_code)
    xlag = get_lag_from_regressor_code(xlag_code)
    ylag = get_lag_from_regressor_code(ylag_code)
    return max(xlag, ylag)

get_max_xlag(xlag=1)

Get maximum value from various xlag structures.

Parameters:

Name Type Description Default
xlag int, list of int, or nested list of int

Input that can be a single integer, a list, or a nested list.

1

Returns:

Type Description
int

Maximum value found.

Source code in sysidentpy/utils/lags.py
def get_max_xlag(xlag: int = 1):
    """Get maximum value from various xlag structures.

    Parameters
    ----------
    xlag : int, list of int, or nested list of int
        Input that can be a single integer, a list, or a nested list.

    Returns
    -------
    int
        Maximum value found.
    """
    if isinstance(xlag, int):  # Case 1: Single integer
        return xlag

    if isinstance(xlag, list):
        # Case 2: Flat list of integers
        if all(isinstance(i, int) for i in xlag):
            return max(xlag)
        # Case 3: Nested list
        return max(chain.from_iterable(xlag))

    raise ValueError("Unsupported data type for xlag")

get_max_ylag(ylag=1)

Get maximum ylag.

Parameters:

Name Type Description Default
ylag ndarray of int

The range of lags according to user definition.

1

Returns:

Name Type Description
ny list

Maximum value of ylag.

Source code in sysidentpy/utils/lags.py
def get_max_ylag(ylag: int = 1):
    """Get maximum ylag.

    Parameters
    ----------
    ylag : ndarray of int
        The range of lags according to user definition.

    Returns
    -------
    ny : list
        Maximum value of ylag.

    """
    ny = np.max(list(chain.from_iterable([[ylag]])))
    return ny

Utils methods for NARMAX modeling.

regressor_code(*, X=None, xlag=2, ylag=2, model_type='NARMAX', model_representation=None, basis_function=Polynomial())

Generate a regressor code based on the provided parameters.

Parameters:

Name Type Description Default
X ndarray

The input feature matrix.

None
xlag int

The number of lags for the input features.

2
ylag int

The number of lags for the target variable.

2
model_type str

The type of model to be used. Default is "NARMAX".

'NARMAX'
model_representation str

The model representation to be used.

None
basis_function object

The basis function object used to transform the regressor space.

Polynomial()

Returns:

Name Type Description
encoding ndarray

The generated regressor encoding.

Source code in sysidentpy/utils/narmax_tools.py
@deprecated(
    version="v0.6.0",
    future_version="v1.0.0",
    message=(
        " `regressor_code` is deprecated in v0.6.0 and will be removed in v1.0.0."
        " Use the `count_model_regressors` from sysidentpy.utils instead."
    ),
)
def regressor_code(
    *,
    X: Optional[np.ndarray] = None,
    xlag: int = 2,
    ylag: int = 2,
    model_type: str = "NARMAX",
    model_representation: Optional[str] = None,
    basis_function: Polynomial = Polynomial(),
) -> np.ndarray:
    """Generate a regressor code based on the provided parameters.

    Parameters
    ----------
    X : np.ndarray, optional
        The input feature matrix.
    xlag : int, optional
        The number of lags for the input features.
    ylag : int, optional
        The number of lags for the target variable.
    model_type : str, optional
        The type of model to be used. Default is "NARMAX".
    model_representation : str, optional
        The model representation to be used.
    basis_function : object, optional
        The basis function object used to transform the regressor space.

    Returns
    -------
    encoding : np.ndarray
        The generated regressor encoding.
    """
    if X is not None:
        n_inputs = num_features(X)
    else:
        n_inputs = 1  # only used to create the regressor space base

    encoding = RegressorDictionary(
        xlag=xlag, ylag=ylag, model_type=model_type, basis_function=basis_function
    ).regressor_space(n_inputs)

    if not isinstance(basis_function, Polynomial) and basis_function.ensemble:
        repetition = basis_function.n * 2
        basis_code = np.sort(
            np.tile(encoding[1:, :], (repetition, 1)),
            axis=0,
        )
        encoding = np.concatenate([encoding[1:], basis_code])
    elif (
        not isinstance(basis_function, Polynomial) and basis_function.ensemble is False
    ):
        repetition = basis_function.n * 2
        encoding = np.sort(
            np.tile(encoding[1:, :], (repetition, 1)),
            axis=0,
        )

    if (
        isinstance(basis_function, Polynomial)
        and model_representation == "neural_network"
    ):
        return encoding[1:]
    if isinstance(basis_function, Polynomial) and model_representation is None:
        return encoding

    return encoding

set_weights(*, static_function=True, static_gain=True, start=-0.01, stop=-5, num=50, base=2.71)

Set log-spaced weights assigned to each objective in the MO optimization.

Parameters:

Name Type Description Default
static_function bool

Indicator for the presence of static function data. Default is True.

True
static_gain bool

Indicator for the presence of static gain data. Default is True.

True
start float

The starting exponent for the log-spaced weights. Default is -0.01.

-0.01
stop float

The stopping exponent for the log-spaced weights. Default is -5.

-5
num int

The number of weights to generate. Default is 50.

50
base float

The base of the logarithm used to generate weights. Default is 2.71.

2.71

Returns:

Name Type Description
weights ndarray of floats

An array containing the weights for each objective.

Notes

This method calculates the weights to be assigned to different objectives in multi-objective optimization. The choice of weights depends on the presence of static function and static gain data. If both are present, a set of weights for dynamic, gain, and static objectives is computed. If either static function or static gain is absent, a simplified set of weights is generated.

Source code in sysidentpy/utils/narmax_tools.py
def set_weights(
    *,
    static_function: bool = True,
    static_gain: bool = True,
    start: float = -0.01,
    stop: float = -5,
    num: int = 50,
    base: float = 2.71,
) -> np.ndarray:
    """Set log-spaced weights assigned to each objective in the MO optimization.

    Parameters
    ----------
    static_function : bool, optional
        Indicator for the presence of static function data. Default is True.
    static_gain : bool, optional
        Indicator for the presence of static gain data. Default is True.
    start : float, optional
        The starting exponent for the log-spaced weights. Default is -0.01.
    stop : float, optional
        The stopping exponent for the log-spaced weights. Default is -5.
    num : int, optional
        The number of weights to generate. Default is 50.
    base : float, optional
        The base of the logarithm used to generate weights. Default is 2.71.

    Returns
    -------
    weights : ndarray of floats
        An array containing the weights for each objective.

    Notes
    -----
    This method calculates the weights to be assigned to different objectives in
    multi-objective optimization. The choice of weights depends on the presence
    of static function and static gain data. If both are present, a set of weights
    for dynamic, gain, and static objectives is computed. If either static function
    or static gain is absent, a simplified set of weights is generated.

    """
    w1 = np.logspace(start=start, stop=stop, num=num, base=base)
    if static_function is False or static_gain is False:
        w2 = 1 - w1
        return np.vstack([w1, w2])

    w2 = w1[::-1]
    w1_grid, w2_grid = np.meshgrid(w1, w2)
    w3_grid = 1 - (w1_grid + w2_grid)
    mask = w1_grid + w2_grid <= 1
    dynamic_weight = np.flip(w1_grid[mask])
    gain_weight = np.flip(w2_grid[mask])
    static_weight = np.flip(w3_grid[mask])
    return np.vstack([dynamic_weight, gain_weight, static_weight])

train_test_split(X, y, test_size=0.25)

Split the time series dataset into training and testing sets.

Parameters:

Name Type Description Default
X ndarray

The feature matrix. Can be None if there are no features.

required
y ndarray

The target vector.

required
test_size float

The proportion of the dataset to include in the test split. Default is 0.25.

0.25

Returns:

Name Type Description
X_train ndarray or None

The training set feature matrix, or None if x is None.

X_test ndarray or None

The testing set feature matrix, or None if x is None.

y_train ndarray

The training set target vector.

y_test ndarray

The testing set target vector.

Source code in sysidentpy/utils/narmax_tools.py
def train_test_split(
    X: Optional[np.ndarray], y: np.ndarray, test_size: float = 0.25
) -> Tuple[Optional[np.ndarray], Optional[np.ndarray], np.ndarray, np.ndarray]:
    """Split the time series dataset into training and testing sets.

    Parameters
    ----------
    X : np.ndarray, optional
        The feature matrix. Can be None if there are no features.
    y : np.ndarray
        The target vector.
    test_size : float, optional
        The proportion of the dataset to include in the test split. Default is 0.25.

    Returns
    -------
    X_train : np.ndarray or None
        The training set feature matrix, or None if x is None.
    X_test : np.ndarray or None
        The testing set feature matrix, or None if x is None.
    y_train : np.ndarray
        The training set target vector.
    y_test : np.ndarray
        The testing set target vector.
    """
    if not 0 < test_size < 1:
        raise ValueError("test_size should be between 0 and 1")

    # Determine the split index
    split_index = int(len(y) * (1 - test_size))

    y_train, y_test = y[:split_index], y[split_index:]

    if X is None:
        return None, None, y_train, y_test

    X_train, X_test = X[:split_index], X[split_index:]

    return X_train, X_test, y_train, y_test

Plotting methods.

plot_residues_correlation(data=None, *, figsize=(10, 6), n=100, style='default', facecolor='white', title='Residual Analysis', ylabel='Correlation')

Plot the residual validation.

Source code in sysidentpy/utils/plotting.py
def plot_residues_correlation(
    data=None,
    *,
    figsize: Tuple[int, int] = (10, 6),
    n: int = 100,
    style: str = "default",
    facecolor: str = "white",
    title: str = "Residual Analysis",
    ylabel: str = "Correlation",
) -> None:
    """Plot the residual validation."""
    plt.style.use(style)
    plt.rcParams["axes.facecolor"] = facecolor
    _, ax = plt.subplots(figsize=figsize, facecolor=facecolor)
    ax.plot(data[0][:n], color="#1f77b4")
    ax.axhspan(data[1], data[2], color="#ccd9ff", alpha=0.5, lw=0)
    ax.set_xlabel("Lag", fontsize=14)
    ax.set_ylabel(ylabel, fontsize=14)
    ax.tick_params(labelsize=14)
    ax.set_ylim([-1, 1])
    ax.set_title(title, fontsize=18)
    plt.show()

plot_results(y, *, yhat, n=100, title='Free run simulation', xlabel='Samples', ylabel='y, $\\hat{y}$', data_color='#1f77b4', model_color='#ff7f0e', marker='o', model_marker='*', linewidth=1.5, figsize=(10, 6), style='default', facecolor='white')

Plot the results of a simulation.

Parameters:

Name Type Description Default
y ndarray

True data values.

required
yhat ndarray

Model predictions.

required
n int

Number of samples to plot.

100
title str

Plot title.

'Free run simulation'
xlabel str

Label for the x-axis.

'Samples'
ylabel str

Label for the y-axis.

'y, $\\hat{y}$'
data_color str

Color for the data line.

'#1f77b4'
model_color str

Color for the model line.

'#ff7f0e'
marker str

Marker style for the data line.

'o'
model_marker str

Marker style for the model line.

'*'
linewidth float

Line width for both lines.

1.5
figsize Tuple[int, int]

Figure size (width, height).

(10, 6)
style str

Matplotlib style.

'default'
facecolor str

Figure facecolor.

'white'
Source code in sysidentpy/utils/plotting.py
def plot_results(
    y: np.ndarray,
    *,
    yhat: np.ndarray,
    n: int = 100,
    title: str = "Free run simulation",
    xlabel: str = "Samples",
    ylabel: str = r"y, $\hat{y}$",
    data_color: str = "#1f77b4",
    model_color: str = "#ff7f0e",
    marker: str = "o",
    model_marker: str = "*",
    linewidth: float = 1.5,
    figsize: Tuple[int, int] = (10, 6),
    style: str = "default",
    facecolor: str = "white",
) -> None:
    """Plot the results of a simulation.

    Parameters
    ----------
    y : np.ndarray
        True data values.
    yhat : np.ndarray
        Model predictions.
    n : int
        Number of samples to plot.
    title : str
        Plot title.
    xlabel : str
        Label for the x-axis.
    ylabel : str
        Label for the y-axis.
    data_color : str
        Color for the data line.
    model_color : str
        Color for the model line.
    marker : str
        Marker style for the data line.
    model_marker : str
        Marker style for the model line.
    linewidth : float
        Line width for both lines.
    figsize : Tuple[int, int]
        Figure size (width, height).
    style : str
        Matplotlib style.
    facecolor : str
        Figure facecolor.

    """
    if len(y) == 0 or len(yhat) == 0:
        raise ValueError("Arrays must have at least 1 samples.")

    # Set Matplotlib style and figure properties
    plt.style.use(style)
    plt.rcParams["axes.facecolor"] = facecolor

    _, ax = plt.subplots(figsize=figsize, facecolor=facecolor)
    ax.plot(
        y[:n], c=data_color, alpha=1, marker=marker, label="Data", linewidth=linewidth
    )
    ax.plot(
        yhat[:n], c=model_color, marker=model_marker, label="Model", linewidth=linewidth
    )

    # Customize plot properties
    ax.set_title(title, fontsize=18)
    ax.legend()
    ax.tick_params(labelsize=14)
    ax.set_xlabel(xlabel, fontsize=14)
    ax.set_ylabel(ylabel, fontsize=14)
    plt.show()

load_model(*, file_name='model', path=None)

Load the model from file "file_name.syspy" located at path "path".

Parameters:

Name Type Description Default
file_name

model to be loaded

'model'
path
None

Returns:

Name Type Description
model_loaded model loaded, as a variable, containing model and its attributes
Source code in sysidentpy/utils/save_load.py
def load_model(
    *,
    file_name="model",
    path=None,
):
    """Load the model from file "file_name.syspy" located at path "path".

    Parameters
    ----------
    file_name: file name (str), along with .syspy extension of the file containing
        model to be loaded
    path: location where "file_name.syspy" is (optional).

    Returns
    -------
    model_loaded: model loaded, as a variable, containing model and its attributes

    """
    # Checking if path is provided
    if path is not None:

        # Composing file_name with path
        file_name = os.path.join(path, file_name)

    # Loading the model
    with open(file_name, "rb") as fp:
        model_loaded = pk.load(fp)

    return model_loaded

save_model(*, model=None, file_name='model', path=None)

Save the model "model" in folder "folder" using an extension .syspy.

Parameters:

Name Type Description Default
model
None
file_name
'model'
path
None

Returns:

Type Description
file file_name.syspy located at "path", containing the estimated model.
Source code in sysidentpy/utils/save_load.py
def save_model(
    *,
    model=None,
    file_name="model",
    path=None,
):
    """Save the model "model" in folder "folder" using an extension .syspy.

    Parameters
    ----------
    model: the model variable to be saved
    file_name: file name, along with .syspy extension
    path: location where the model will be saved (optional)

    Returns
    -------
    file file_name.syspy located at "path", containing the estimated model.

    """
    if model is None:
        raise TypeError("model cannot be None.")

    # Checking if path is provided
    if path is not None:

        # Composing file_name with path
        file_name = os.path.join(path, file_name)

    # Saving model
    with open(file_name, "wb") as fp:
        pk.dump(model, fp)

get_index_from_regressor_code(regressor_code, model_code)

Get the index of user regressor in regressor space.

Took from: https://stackoverflow.com/questions/38674027/find-the-row-indexes-of-several-values-in-a-numpy-array/38674038#38674038

Parameters:

Name Type Description Default
regressor_code ndarray of int

Matrix codification of all possible regressors.

required
model_code ndarray of int

Model defined by the user to simulate.

required

Returns:

Name Type Description
model_index ndarray of int

Index of model code in the regressor space.

Source code in sysidentpy/utils/simulation.py
def get_index_from_regressor_code(regressor_code: np.ndarray, model_code: List[int]):
    """Get the index of user regressor in regressor space.

    Took from: https://stackoverflow.com/questions/38674027/find-the-row-indexes-of-several-values-in-a-numpy-array/38674038#38674038

    Parameters
    ----------
    regressor_code : ndarray of int
        Matrix codification of all possible regressors.
    model_code : ndarray of int
        Model defined by the user to simulate.

    Returns
    -------
    model_index : ndarray of int
        Index of model code in the regressor space.

    """
    dims = regressor_code.max(0) + 1
    model_index = np.where(
        np.in1d(
            np.ravel_multi_index(regressor_code.T, dims),
            np.ravel_multi_index(model_code.T, dims),
        )
    )[0]
    return model_index

list_input_regressor_code(model_code)

Create a flattened array of input regressors.

Parameters:

Name Type Description Default
model_code ndarray of int

Model defined by the user to simulate.

required

Returns:

Name Type Description
regressor_code ndarray of int

Flattened list of output regressors.

Source code in sysidentpy/utils/simulation.py
def list_input_regressor_code(model_code: List[int]) -> np.ndarray:
    """Create a flattened array of input regressors.

    Parameters
    ----------
    model_code : ndarray of int
        Model defined by the user to simulate.

    Returns
    -------
    regressor_code : ndarray of int
        Flattened list of output regressors.

    """
    regressor_code = [
        code for code in model_code.ravel() if (code != 0) and (str(code)[0] != "1")
    ]
    return np.asarray(regressor_code)

list_output_regressor_code(model_code)

Create a flattened array of output regressors.

Parameters:

Name Type Description Default
model_code ndarray of int

Model defined by the user to simulate.

required

Returns:

Name Type Description
regressor_code ndarray of int

Flattened list of output regressors.

Source code in sysidentpy/utils/simulation.py
def list_output_regressor_code(model_code: List[int]) -> np.ndarray:
    """Create a flattened array of output regressors.

    Parameters
    ----------
    model_code : ndarray of int
        Model defined by the user to simulate.

    Returns
    -------
    regressor_code : ndarray of int
        Flattened list of output regressors.

    """
    regressor_code = [
        code for code in model_code.ravel() if (code != 0) and (str(code)[0] == "1")
    ]

    return np.asarray(regressor_code)