Documentation for Parameters Estimation
¶
Methods for parameter estimation.
AffineLeastMeanSquares
¶
Bases: BaseEstimator
Affine Least Mean Squares (ALMS) filter for parameter estimation.
The ALMS filter is an adaptive filter used to estimate the parameters of a model. It incorporates an offset covariance factor to improve the stability and convergence of the parameter estimation process.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
mu | float | The learning rate or step size for the LMS algorithm. | 0.01 |
offset_covariance | float | The offset covariance factor of the affine least mean squares filter. | 0.2 |
unbiased | bool | If True, applies an unbiased estimator. Default is False. | False |
uiter | int | Number of iterations for the unbiased estimator. Default is 30. | 30 |
Attributes:
Name | Type | Description |
---|---|---|
mu | float | The learning rate or step size for the LMS algorithm. |
offset_covariance | float | The offset covariance factor of the affine least mean squares filter. |
xi | ndarray or None | The estimation error at each iteration. Initialized as None and updated during optimization. |
Methods:
Name | Description |
---|---|
optimize | Estimate the model parameters using the ALMS filter. |
References
- Poularikas, A. D. (2017). Adaptive filtering: Fundamentals of least mean squares with MATLABĀ®. CRC Press.
Source code in sysidentpy/parameter_estimation/estimators.py
448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 |
|
optimize(psi, y)
¶
Estimate the model parameters using the Affine Least Mean Squares.
The ALMS method updates the parameter estimates recursively as follows:
- Compute the estimation error:
$$ \xi = y - \psi \theta_{i-1} $$
- Update the parameter vector:
$$ \theta_i = \theta_{i-1} + \mu \psi (\psi^T \psi + \text{offset_covariance} \cdot I)^{-1} \xi $$
Parameters:
Name | Type | Description | Default |
---|---|---|---|
psi | ndarray of floats | The information matrix of the model. | required |
y | array-like of shape (n_samples, 1) | The data used to train the model. | required |
Returns:
Name | Type | Description |
---|---|---|
theta | array-like of shape (n_features, 1) | The estimated parameters of the model. |
Notes
A more in-depth documentation of all methods for parameters estimation will be available soon. For now, please refer to the mentioned references.
Source code in sysidentpy/parameter_estimation/estimators.py
BoundedVariableLeastSquares
¶
Bases: BaseEstimator
Solve a linear least-squares problem with bounds on the variables.
This is a wrapper class for the scipy.optimize.lsq_linear
method.
Given a m-by-n design matrix A and a target vector b with m elements, lsq_linear
solves the following optimization problem::
minimize 0.5 * ||A x - b||**2
subject to lb <= x <= ub
This optimization problem is convex, hence a found minimum (if iterations have converged) is guaranteed to be global.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
unbiased | bool | Indicates whether an unbiased estimator is applied. | False |
uiter | int | Number of iterations for the unbiased estimator. | 30 |
method | trf or bvls | Method to perform minimization.
Default is 'trf'. | 'trf' |
tol | float | Tolerance parameter. The algorithm terminates if a relative change of the cost function is less than
| 1e-10 |
lsq_solver | (None, exact, lsmr) | Method of solving unbounded least-squares problems throughout iterations:
If None (default), the solver is chosen based on type of | None |
lsmr_tol | (None, float or auto) | Tolerance parameters 'atol' and 'btol' for | None |
max_iter | None or int | Maximum number of iterations before termination. If None (default), it is set to 100 for | None |
verbose | (0, 1, 2) | Level of algorithm's verbosity:
| 0 |
lsmr_maxiter | None or int | Maximum number of iterations for the lsmr least squares solver, if it is used (by setting | None |
References
M. A. Branch, T. F. Coleman, and Y. Li, "A Subspace, Interior, and Conjugate Gradient Method for Large-Scale Bound-Constrained Minimization Problems," SIAM Journal on Scientific Computing, Vol. 21, Number 1, pp 1-23, 1999. P. B. Start and R. L. Parker, "Bounded-Variable Least-Squares: an Algorithm and Applications", Computational Statistics, 10, 129-141, 1995.
Notes
This docstring is adapted from the scipy.optimize.lsq_linear
method.
Examples:
In this example, a problem with a large sparse matrix and bounds on the variables is solved.
>>> import numpy as np
>>> from scipy.sparse import rand
>>> from sysidentpy.parameter_estimation import BoundedVariableLeastSquares
>>> rng = np.random.default_rng()
...
>>> m = 20000
>>> n = 10000
...
>>> A = rand(m, n, density=1e-4, random_state=rng)
>>> b = rng.standard_normal(m)
...
>>> lb = rng.standard_normal(n)
>>> ub = lb + 1
...
>>> res = BoundedVariableLeastSquares(A, b, bounds=(lb, ub), lsmr_tol='auto',
verbose=1)
The relative change of the cost function is less than `tol`.
Number of iterations 16, initial cost 1.5039e+04, final cost 1.1112e+04,
first-order optimality 4.66e-08.
Source code in sysidentpy/parameter_estimation/estimators.py
1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 |
|
optimize(psi, y)
¶
Parameter estimation using the BoundedVariableLeastSquares algorithm.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
psi | ndarray of floats | The information matrix of the model. | required |
y | ndarray of floats of shape (n_samples, 1) | The data used to train the model. | required |
Returns:
Name | Type | Description |
---|---|---|
theta | array-like of shape = number_of_model_elements | The estimated parameters of the model. |
Notes
This is a wrapper class for the scipy.optimize.lsq_linear
method.
References
.. [1] scipy, https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.lsq_linear.html
Source code in sysidentpy/parameter_estimation/estimators.py
EstimatorError
¶
Bases: Exception
Generic Python-exception-derived object raised by estimator functions.
General purpose exception class, derived from Python's ValueError class, programmatically raised in estimators functions when a Estimator-related condition would prevent further correct execution of the function.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
None | | required |
Source code in sysidentpy/parameter_estimation/estimators.py
LeastMeanSquareMixedNorm
¶
Bases: BaseEstimator
Least Mean Square Mixed Norm (LMS-MN) Adaptive Filter.
This class implements the Mixed-norm Least Mean Square (LMS) adaptive filter algorithm, which incorporates an additional weight factor to control the proportions of the error norms, thus providing an extra degree of freedom in the adaptation process.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
mu | float | The adaptation step size. Default is 0.01. | 0.01 |
weight | float | The weight factor for mixed-norm control. This factor controls the proportions of the error norms and offers an extra degree of freedom within the adaptation of the LMS mixed norm method. | 0.02 |
unbiased | bool | If True, applies an unbiased estimator. Default is False. | False |
uiter | int | Number of iterations for the unbiased estimator. Default is 30. | 30 |
Attributes:
Name | Type | Description |
---|---|---|
mu | float | The adaptation step size. |
weight | float | The weight factor for mixed-norm control. |
xi | ndarray or None | The error signal, initialized to None. |
Methods:
Name | Description |
---|---|
optimize | Estimate the model parameters using the LMSF filter. |
References
- Chambers, J. A., Tanrikulu, O., & Constantinides, A. G. (1994). Least mean mixed-norm adaptive filtering. Electronics letters, 30(19), 1574-1575. https://ieeexplore.ieee.org/document/326382
- Dissertation (Portuguese): Zipf, J. G. F. (2011). ClassificaĆ§Ć£o, anĆ”lise estatĆstica e novas estratĆ©gias de algoritmos LMS de passo variĆ”vel.
- Wikipedia entry on Least Mean Squares https://en.wikipedia.org/wiki/Least_mean_squares_filter
Source code in sysidentpy/parameter_estimation/estimators.py
1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 |
|
optimize(psi, y)
¶
Parameter estimation using the Mixed-norm LMS filter.
The LMS-MN algorithm updates the parameter estimates recursively as follows:
- Compute the estimation error:
$$ \xi_i = y_i - \psi_i^T \theta_{i-1} $$
- Update the parameter vector:
$$ \theta_i = \theta_{i-1} + \mu \psi_i \xi_i (\text{weight} + (1 - \text{weight}) \xi_i^2) $$
Parameters:
Name | Type | Description | Default |
---|---|---|---|
psi | ndarray of floats | The information matrix of the model. | required |
y | array-like of shape (n_samples, 1) | The data used to train the model. | required |
Returns:
Name | Type | Description |
---|---|---|
theta | array-like of shape (n_features, 1) | The estimated parameters of the model. |
Notes
A more in-depth documentation of all methods for parameter estimation will be available soon. For now, please refer to the mentioned references.
Source code in sysidentpy/parameter_estimation/estimators.py
LeastMeanSquares
¶
Bases: BaseEstimator
Least Mean Squares (LMS) filter for parameter estimation in adaptive filtering.
The LMS algorithm is an adaptive filter used to estimate the parameters of a model by minimizing the mean square error between the observed and predicted values.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
mu | float | The learning rate or step size for the LMS algorithm. | 0.01 |
unbiased | bool | If True, applies an unbiased estimator. Default is False. | False |
uiter | int | Number of iterations for the unbiased estimator. Default is 30. | 30 |
Attributes:
Name | Type | Description |
---|---|---|
mu | float | The learning rate or step size for the LMS algorithm. |
unbiased | bool | Indicates whether an unbiased estimator is applied. |
uiter | int | Number of iterations for the unbiased estimator. |
xi | ndarray or None | The estimation error at each iteration. Initialized as None and updated during optimization. |
Methods:
Name | Description |
---|---|
optimize | Estimate the model parameters using the LMS filter. |
References
- Haykin, S., & Widrow, B. (Eds.). (2003). Least-mean-square adaptive filters (Vol. 31). John Wiley & Sons.
- Zipf, J. G. F. (2011). ClassificaĆ§Ć£o, anĆ”lise estatĆstica e novas estratĆ©gias de algoritmos LMS de passo variĆ”vel.
- Wikipedia entry on Least Mean Squares: https://en.wikipedia.org/wiki/Least_mean_squares_filter
Source code in sysidentpy/parameter_estimation/estimators.py
552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 |
|
optimize(psi, y)
¶
Estimate the model parameters using the Least Mean Squares filter.
The LMS algorithm updates the parameter estimates recursively as follows:
- Compute the estimation error:
$$ \xi_i = y_i - \psi_i^T \theta_{i-1} $$
- Update the parameter vector:
$$ \theta_i = \theta_{i-1} + 2 \mu \xi_i \psi_i $$
Parameters:
Name | Type | Description | Default |
---|---|---|---|
psi | ndarray of floats | The information matrix of the model. | required |
y | array-like of shape (n_samples, 1) | The data used to train the model. | required |
Returns:
Name | Type | Description |
---|---|---|
theta | array-like of shape (n_features, 1) | The estimated parameters of the model. |
Source code in sysidentpy/parameter_estimation/estimators.py
LeastMeanSquaresFourth
¶
Bases: BaseEstimator
Least Mean Squares Fourth (LMSF) filter for parameter estimation.
The LMSF algorithm is an adaptive filter used to estimate the parameters of a model by using the mean fourth error cost function to eliminate the noise effectively.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
mu | float | The learning rate or step size for the LMS algorithm. | 0.5 |
unbiased | bool | If True, applies an unbiased estimator. Default is False. | False |
uiter | int | Number of iterations for the unbiased estimator. Default is 30. | 30 |
Attributes:
Name | Type | Description |
---|---|---|
mu | float | The learning rate or step size for the LMS algorithm. |
unbiased | bool | Indicates whether an unbiased estimator is applied. |
uiter | int | Number of iterations for the unbiased estimator. |
xi | ndarray or None | The estimation error at each iteration. Initialized as None and updated during optimization. |
Methods:
Name | Description |
---|---|
optimize | Estimate the model parameters using the LMSF filter. |
References
- Hayes, M. H. (2009). Statistical digital signal processing and modeling. John Wiley & Sons.
- Zipf, J. G. F. (2011). ClassificaĆ§Ć£o, anĆ”lise estatĆstica e novas estratĆ©gias de algoritmos LMS de passo variĆ”vel.
- Gui, G., Mehbodniya, A., & Adachi, F. (2013). Least mean square/fourth algorithm with application to sparse channel estimation. arXiv preprint arXiv:1304.3911. https://arxiv.org/pdf/1304.3911.pdf
- Nascimento, V. H., & Bermudez, J. C. M. (2005, March). When is the least-mean fourth algorithm mean-square stable? In Proceedings.(ICASSP'05). IEEE International Conference on Acoustics, Speech, and Signal Processing, 2005. (Vol. 4, pp. iv-341). IEEE. http://www.lps.usp.br/vitor/artigos/icassp05.pdf
- Wikipedia entry on Least Mean Squares: https://en.wikipedia.org/wiki/Least_mean_squares_filter
Source code in sysidentpy/parameter_estimation/estimators.py
1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 |
|
optimize(psi, y)
¶
Parameter estimation using the LMS Fourth filter.
The LMSF algorithm updates the parameter estimates recursively as follows:
- Compute the estimation error:
$$ \xi_i = y_i - \psi_i^T \theta_{i-1} $$
- Update the parameter vector:
$$ \theta_i = \theta_{i-1} + \mu \psi_i \xi_i^3 $$
Parameters:
Name | Type | Description | Default |
---|---|---|---|
psi | ndarray of floats | The information matrix of the model. | required |
y | ndarray of floats of shape (n_samples, 1) | The data used to train the model. | required |
Returns:
Name | Type | Description |
---|---|---|
theta | ndarray of floats of shape (n_features, 1) | The estimated parameters of the model. |
Source code in sysidentpy/parameter_estimation/estimators.py
LeastMeanSquaresLeaky
¶
Bases: BaseEstimator
Least Mean Squares Leaky (LMSL) filter for parameter estimation.
The LMSL algorithm is an adaptive filter used to estimate the parameters of a model by minimizing the mean square error between the observed and predicted values. The leakage factor helps to prevent coefficient drift.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
mu | float | The learning rate or step size for the LMS algorithm. | 0.01 |
gama | float | The leakage factor of the Leaky LMS method. | 0.2 |
unbiased | bool | If True, applies an unbiased estimator. Default is False. | False |
uiter | int | Number of iterations for the unbiased estimator. Default is 30. | 30 |
Attributes:
Name | Type | Description |
---|---|---|
mu | float | The learning rate or step size for the LMS algorithm. |
gama | float, default=0.2 | The leakage factor of the Leaky LMS method. |
xi | ndarray or None | The estimation error at each iteration. Initialized as None and updated during optimization. |
Methods:
Name | Description |
---|---|
optimize | Estimate the model parameters using the LMSL filter. |
References
- Hayes, M. H. (2009). Statistical digital signal processing and modeling. John Wiley & Sons.
- Zipf, J. G. F. (2011). ClassificaĆ§Ć£o, anĆ”lise estatĆstica e novas estratĆ©gias de algoritmos LMS de passo variĆ”vel.
- Wikipedia entry on Least Mean Squares: https://en.wikipedia.org/wiki/Least_mean_squares_filter
Source code in sysidentpy/parameter_estimation/estimators.py
1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 |
|
optimize(psi, y)
¶
Parameter estimation using the Leaky LMS filter.
The LMSL algorithm updates the parameter estimates recursively as follows:
- Compute the estimation error:
$$ \xi_i = y_i - \psi_i^T \theta_{i-1} $$
- Update the parameter vector:
$$ \theta_i = \theta_{i-1} (1 - \mu \gamma) + \mu \xi_i \psi_i $$
When the leakage factor, \(\gamma\), is set to 0, there is no leakage in the estimation process.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
psi | ndarray of floats | The information matrix of the model. | required |
y | array-like of shape (n_samples, 1) | The data used to train the model. | required |
Returns:
Name | Type | Description |
---|---|---|
theta | array-like of shape (n_features, 1) | The estimated parameters of the model. |
References
- Hayes, M. H. (2009). Statistical digital signal processing and modeling. John Wiley & Sons.
- Zipf, J. G. F. (2011). ClassificaĆ§Ć£o, anĆ”lise estatĆstica e novas estratĆ©gias de algoritmos LMS de passo variĆ”vel.
- Wikipedia entry on Least Mean Squares: https://en.wikipedia.org/wiki/Least_mean_squares_filter
Source code in sysidentpy/parameter_estimation/estimators.py
LeastMeanSquaresNormalizedLeaky
¶
Bases: BaseEstimator
Normalized Least Mean Squares Leaky (NLMSL) filter for parameter estimation.
The NLMSL algorithm is an adaptive filter used to estimate the parameters of a model by minimizing the mean square error between the observed and predicted values. The normalization is used to avoid numerical instability when updating the estimated parameters, and the leakage factor helps to prevent coefficient drift.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
mu | float | The learning rate or step size for the LMS algorithm. | 0.01 |
eps | float | Normalization factor of the normalized filters. | np.finfo(np.float64).eps |
gama | float | The leakage factor of the Leaky LMS method. | 0.2 |
Attributes:
Name | Type | Description |
---|---|---|
mu | float | The learning rate or step size for the LMS algorithm. |
eps | float, default=np.finfo(np.float64).eps | Normalization factor of the normalized filters. |
gama | float, default=0.2 | The leakage factor of the Leaky LMS method. |
xi | ndarray or None | The estimation error at each iteration. Initialized as None and updated during optimization. |
Methods:
Name | Description |
---|---|
optimize | Estimate the model parameters using the NLMSL filter. |
References
- Hayes, M. H. (2009). Statistical digital signal processing and modeling. John Wiley & Sons.
- Zipf, J. G. F. (2011). ClassificaĆ§Ć£o, anĆ”lise estatĆstica e novas estratĆ©gias de algoritmos LMS de passo variĆ”vel.
- Wikipedia entry on Least Mean Squares: https://en.wikipedia.org/wiki/Least_mean_squares_filter
Source code in sysidentpy/parameter_estimation/estimators.py
1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 |
|
optimize(psi, y)
¶
Parameter estimation using the Normalized Leaky LMS filter.
The NLMSL algorithm updates the parameter estimates recursively as follows:
- Compute the estimation error:
$$ \xi_i = y_i - \psi_i^T \theta_{i-1} $$
- Update the parameter vector:
$$ \theta_i = \theta_{i-1} (1 - \mu \gamma) + \mu \frac{\xi_i \psi_i}{\epsilon + \psi_i^T \psi_i} $$
When the leakage factor, \(\gamma\), is set to 0, there is no leakage in the estimation process.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
psi | ndarray of floats | The information matrix of the model. | required |
y | array-like of shape (n_samples, 1) | The data used to train the model. | required |
Returns:
Name | Type | Description |
---|---|---|
theta | array-like of shape (n_features, 1) | The estimated parameters of the model. |
References
- Hayes, M. H. (2009). Statistical digital signal processing and modeling. John Wiley & Sons.
- Zipf, J. G. F. (2011). ClassificaĆ§Ć£o, anĆ”lise estatĆstica e novas estratĆ©gias de algoritmos LMS de passo variĆ”vel.
- Wikipedia entry on Least Mean Squares: https://en.wikipedia.org/wiki/Least_mean_squares_filter
Source code in sysidentpy/parameter_estimation/estimators.py
LeastMeanSquaresNormalizedSignRegressor
¶
Bases: BaseEstimator
Normalized Least Mean Squares SignRegressor filter for parameter estimation.
The Normalized Sign-Regressor LMS algorithm updates the parameter estimates recursively by normalizing the input signal to avoid numerical instability and using the sign of the information matrix to adjust the filter coefficients.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
mu | float | The learning rate or step size for the LMS algorithm. | 0.01 |
eps | float | Normalization factor of the normalized filters. | np.finfo(np.float64).eps |
Attributes:
Name | Type | Description |
---|---|---|
mu | float | The learning rate or step size for the LMS algorithm. |
eps | float, default=np.finfo(np.float64).eps | Normalization factor of the normalized filters. |
xi | ndarray or None | The estimation error at each iteration. Initialized as None and updated during optimization. |
Methods:
Name | Description |
---|---|
optimize | Estimate the model parameters using the Normalized Sign-Regressor LMS filter. |
References
- Hayes, M. H. (2009). Statistical digital signal processing and modeling. John Wiley & Sons.
- Zipf, J. G. F. (2011). ClassificaĆ§Ć£o, anĆ”lise estatĆstica e novas estratĆ©gias de algoritmos LMS de passo variĆ”vel.
- Wikipedia entry on Least Mean Squares https://en.wikipedia.org/wiki/Least_mean_squares_filter
Source code in sysidentpy/parameter_estimation/estimators.py
1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 |
|
optimize(psi, y)
¶
Parameter estimation using the Normalized Sign-Regressor LMS filter.
The Normalized Sign-Regressor LMS algorithm updates the parameter estimates recursively as follows:
- Compute the estimation error:
$$ \xi_i = y_i - \psi_i^T \theta_{i-1} $$
- Update the parameter vector:
$$ \theta_i = \theta_{i-1} + \mu \cdot \xi_i \cdot \frac{\text{sign}(\psi_i)}{\epsilon + \psi_i^T \psi_i} $$
The normalization is used to avoid numerical instability when updating the estimated parameters and the sign of the information matrix is used to change the filter coefficients.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
psi | ndarray of floats | The information matrix of the model. | required |
y | array-like of shape (n_samples, 1) | The data used to train the model. | required |
Returns:
Name | Type | Description |
---|---|---|
theta | array-like of shape (n_features, 1) | The estimated parameters of the model. |
Source code in sysidentpy/parameter_estimation/estimators.py
LeastMeanSquaresNormalizedSignSign
¶
Bases: BaseEstimator
Normalized Least Mean Squares SignSign (NLMSSS) filter for parameter estimation.
The NLMSSS algorithm updates the parameter estimates recursively by normalizing the input signal to avoid numerical instability and using both the sign of the information matrix and the sign of the error vector to adjust the filter coefficients.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
mu | float | The learning rate or step size for the LMS algorithm. | 0.01 |
eps | float | Normalization factor of the normalized filters. | np.finfo(np.float64).eps |
Attributes:
Name | Type | Description |
---|---|---|
mu | float | The learning rate or step size for the LMS algorithm. |
eps | float | Normalization factor of the normalized filters. |
xi | ndarray or None | The estimation error at each iteration. Initialized as None and updated during optimization. |
Methods:
Name | Description |
---|---|
optimize | Estimate the model parameters using the NLMSSS filter. |
References
- Hayes, M. H. (2009). Statistical digital signal processing and modeling. John Wiley & Sons.
- Zipf, J. G. F. (2011). ClassificaĆ§Ć£o, anĆ”lise estatĆstica e novas estratĆ©gias de algoritmos LMS de passo variĆ”vel.
- Wikipedia entry on Least Mean Squares: https://en.wikipedia.org/wiki/Least_mean_squares_filter
Source code in sysidentpy/parameter_estimation/estimators.py
1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 |
|
optimize(psi, y)
¶
Parameter estimation using the Normalized Sign-Sign LMS filter.
The NLMSSS algorithm updates the parameter estimates recursively as follows:
- Compute the estimation error:
$$ \xi_i = y_i - \psi_i^T \theta_{i-1} $$
- Update the parameter vector:
$$ \theta_i = \theta_{i-1} + 2 \mu \cdot \text{sign}(\xi_i) \cdot \frac{\text{sign}(\psi_i)}{\epsilon + \psi_i^T \psi_i} $$
The normalization is used to avoid numerical instability when updating the estimated parameters and both the sign of the information matrix and the sign of the error vector are used to change the filter coefficients.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
psi | ndarray of floats | The information matrix of the model. | required |
y | array-like of shape (n_samples, 1) | The data used to train the model. | required |
Returns:
Name | Type | Description |
---|---|---|
theta | array-like of shape (n_features, 1) | The estimated parameters of the model. |
References
- Hayes, M. H. (2009). Statistical digital signal processing and modeling. John Wiley & Sons.
- Zipf, J. G. F. (2011). ClassificaĆ§Ć£o, anĆ”lise estatĆstica e novas estratĆ©gias de algoritmos LMS de passo variĆ”vel.
- Wikipedia entry on Least Mean Squares: https://en.wikipedia.org/wiki/Least_mean_squares_filter
Source code in sysidentpy/parameter_estimation/estimators.py
LeastMeanSquaresSignError
¶
Bases: BaseEstimator
Least Mean Squares (LMS) filter for parameter estimation using sign-error.
The sign-error LMS algorithm uses the sign of the error vector to update the filter coefficients.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
mu | float | The learning rate or step size for the LMS algorithm. | 0.01 |
unbiased | bool | If True, applies an unbiased estimator. Default is False. | False |
uiter | int | Number of iterations for the unbiased estimator. Default is 30. | 30 |
Attributes:
Name | Type | Description |
---|---|---|
mu | float | The learning rate or step size for the LMS algorithm. |
xi | ndarray or None | The estimation error at each iteration. Initialized as None and updated during optimization. |
Methods:
Name | Description |
---|---|
optimize | Estimate the model parameters using the LMS filter. |
References
- Hayes, M. H. (2009). Statistical digital signal processing and modeling. John Wiley & Sons.
- Zipf, J. G. F. (2011). ClassificaĆ§Ć£o, anĆ”lise estatĆstica e novas estratĆ©gias de algoritmos LMS de passo variĆ”vel.
- Wikipedia entry on Least Mean Squares: https://en.wikipedia.org/wiki/Least_mean_squares_filter
Source code in sysidentpy/parameter_estimation/estimators.py
642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 |
|
optimize(psi, y)
¶
Parameter estimation using the Sign-Error Least Mean Squares filter.
The sign-error LMS algorithm updates the parameter estimates recursively as follows:
- Compute the estimation error:
$$ \xi_i = y_i - \psi_i^T \theta_{i-1} $$
- Update the parameter vector:
$$ \theta_i = \theta_{i-1} + \mu \cdot \text{sign}(\xi_i) \cdot \psi_i $$
Parameters:
Name | Type | Description | Default |
---|---|---|---|
psi | ndarray of floats | The information matrix of the model. | required |
y | array-like of shape (n_samples, 1) | The data used to train the model. | required |
Returns:
Name | Type | Description |
---|---|---|
theta | array-like of shape (n_features, 1) | The estimated parameters of the model. |
Source code in sysidentpy/parameter_estimation/estimators.py
LeastMeanSquaresSignRegressor
¶
Bases: BaseEstimator
Least Mean Squares (LMSSR) filter for parameter estimation.
The sign-regressor LMS algorithm uses the sign of the matrix information to change the filter coefficients.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
mu | float | The learning rate or step size for the LMS algorithm. | 0.01 |
unbiased | bool | If True, applies an unbiased estimator. Default is False. | False |
uiter | int | Number of iterations for the unbiased estimator. Default is 30. | 30 |
Attributes:
Name | Type | Description |
---|---|---|
mu | float | The learning rate or step size for the LMS algorithm. |
unbiased | bool | Indicates whether an unbiased estimator is applied. |
uiter | int | Number of iterations for the unbiased estimator. |
xi | ndarray or None | The estimation error at each iteration. Initialized as None and updated during optimization. |
Methods:
Name | Description |
---|---|
optimize | Estimate the model parameters using the LMS filter. |
References
- Hayes, M. H. (2009). Statistical digital signal processing and modeling. John Wiley & Sons.
- Zipf, J. G. F. (2011). ClassificaĆ§Ć£o, anĆ”lise estatĆstica e novas estratĆ©gias de algoritmos LMS de passo variĆ”vel.
- Wikipedia entry on Least Mean Squares: https://en.wikipedia.org/wiki/Least_mean_squares_filter
Source code in sysidentpy/parameter_estimation/estimators.py
931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 |
|
optimize(psi, y)
¶
Parameter estimation using the Sign-Regressor LMS filter.
The sign-regressor LMS algorithm updates the parameter estimates recursively as follows:
- Compute the estimation error:
$$ \xi_i = y_i - \psi_i^T \theta_{i-1} $$
- Update the parameter vector:
$$ \theta_i = \theta_{i-1} + \mu \cdot \xi_i \cdot \text{sign}(\psi_i) $$
Parameters:
Name | Type | Description | Default |
---|---|---|---|
psi | ndarray of floats | The information matrix of the model. | required |
y | array-like of shape (n_samples, 1) | The data used to train the model. | required |
Returns:
Name | Type | Description |
---|---|---|
theta | array-like of shape (n_features, 1) | The estimated parameters of the model. |
Source code in sysidentpy/parameter_estimation/estimators.py
LeastMeanSquaresSignSign
¶
Bases: BaseEstimator
Least Mean Squares Sign-Sign (LMSSS) filter for parameter estimation.
The LMSSS algorithm uses both the sign of the matrix information and the sign of the error vector to update the filter coefficients.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
mu | float | The learning rate or step size for the LMS algorithm. | 0.01 |
unbiased | bool | If True, applies an unbiased estimator. Default is False. | False |
uiter | int | Number of iterations for the unbiased estimator. Default is 30. | 30 |
Attributes:
Name | Type | Description |
---|---|---|
mu | float | The learning rate or step size for the LMS algorithm. |
xi | ndarray or None | The estimation error at each iteration. Initialized as None and updated during optimization. |
Methods:
Name | Description |
---|---|
optimize | Estimate the model parameters using the LMSSS filter. |
References
- Hayes, M. H. (2009). Statistical digital signal processing and modeling. John Wiley & Sons.
- Zipf, J. G. F. (2011). ClassificaĆ§Ć£o, anĆ”lise estatĆstica e novas estratĆ©gias de algoritmos LMS de passo variĆ”vel.
- Wikipedia entry on Least Mean Squares: https://en.wikipedia.org/wiki/Least_mean_squares_filter
Source code in sysidentpy/parameter_estimation/estimators.py
1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 |
|
optimize(psi, y)
¶
Parameter estimation using the Sign-Sign LMS filter.
The LMSSS algorithm updates the parameter estimates recursively as follows:
- Compute the estimation error:
$$ \xi_i = y_i - \psi_i^T \theta_{i-1} $$
- Update the parameter vector:
$$ \theta_i = \theta_{i-1} + 2* \mu \cdot \text{sign}(\xi_i) \cdot \text{sign}(\psi_i) $$
Parameters:
Name | Type | Description | Default |
---|---|---|---|
psi | ndarray of floats | The information matrix of the model. | required |
y | array-like of shape (n_samples, 1) | The data used to train the model. | required |
Returns:
Name | Type | Description |
---|---|---|
theta | array-like of shape (n_features, 1) | The estimated parameters of the model. |
Source code in sysidentpy/parameter_estimation/estimators.py
LeastSquares
¶
Bases: BaseEstimator
Ordinary Least Squares for linear parameter estimation.
The Least Squares method minimizes the sum of the squared differences between the observed and predicted values. It is used to estimate the parameters of a linear model.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
unbiased | bool | If True, applies an unbiased estimator. Default is False. | False |
uiter | int | Number of iterations for the unbiased estimator. Default is 20. | 20 |
References
- Sorenson, H. W. (1970). Least-squares estimation: from Gauss to Kalman. IEEE spectrum, 7(7), 63-68. http://pzs.dstu.dp.ua/DataMining/mls/bibl/Gauss2Kalman.pdf
- Aguirre, L. A. (2007). IntroduĆ§Ć£o identificaĆ§Ć£o de sistemas: tĆ©cnicas lineares e nĆ£o-lineares aplicadas a sistemas reais. Editora da UFMG. 3a ediĆ§Ć£o.
- Markovsky, I., & Van Huffel, S. (2007). Overview of total least-squares methods. Signal processing, 87(10), 2283-2302. https://eprints.soton.ac.uk/263855/1/tls_overview.pdf
- Wikipedia entry on Least Squares https://en.wikipedia.org/wiki/Least_squares
Source code in sysidentpy/parameter_estimation/estimators.py
optimize(psi, y)
¶
Estimate the model parameters using the Least Squares method.
The Least Squares method solves the following optimization problem:
where \(\psi\) is the information matrix, \(y\) is the observed data, and \(\theta\) are the model parameters to be estimated.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
psi | ndarray of floats | The information matrix of the model. | required |
y | array-like of shape (n_samples, 1) | The data used to train the model. | required |
Returns:
Name | Type | Description |
---|---|---|
theta | array-like of shape (n_features, 1) | The estimated parameters of the model. |
Source code in sysidentpy/parameter_estimation/estimators.py
LeastSquaresMinimalResidual
¶
Bases: BaseEstimator
Iterative solver for least-squares minimal residual problems.
This is a wrapper class for the scipy.sparse.linalg.lsmr
method.
lsmr solves the system of linear equations Ax = b
. If the system is inconsistent, it solves the least-squares problem min ||b - Ax||_2
. A
is a rectangular matrix of dimension m-by-n, where all cases are allowed: m = n, m > n, or m < n. b
is a vector of length m. The matrix A may be dense or sparse (usually sparse).
Parameters:
Name | Type | Description | Default |
---|---|---|---|
unbiased | bool | If True, applies an unbiased estimator. Default is False. | False |
uiter | int | Number of iterations for the unbiased estimator. Default is 30. | 30 |
Attributes:
Name | Type | Description |
---|---|---|
unbiased | bool | Indicates whether an unbiased estimator is applied. |
uiter | int | Number of iterations for the unbiased estimator. |
damp | float | Damping factor for regularized least-squares. min ||(b) - ( A )x|| ||(0) (damp*I) ||_2 where damp is a scalar. If damp is None or 0, the system is solved without regularization. Default is 0. |
atol, btol | (float, optional) | Stopping tolerances. |
conlim | (float, optional) |
|
maxiter | (int, optional) |
|
show | (bool, optional) | Print iterations logs if |
x0 | (array_like, shape(n), optional) | Initial guess of |
References
.. [1] D. C.-L. Fong and M. A. Saunders, "LSMR: An iterative algorithm for sparse least-squares problems", SIAM J. Sci. Comput., vol. 33, pp. 2950-2971, 2011. :arxiv:1006.0758
.. [2] LSMR Software, https://web.stanford.edu/group/SOL/software/lsmr/
Notes
This docstring is adapted from the scipy.sparse.linalg.lsmr
method.
Source code in sysidentpy/parameter_estimation/estimators.py
2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 |
|
optimize(psi, y)
¶
Parameter estimation using the Mixed-norm LMS filter.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
psi | ndarray of floats | The information matrix of the model. | required |
y | ndarray of floats of shape (n_samples, 1) | The data used to train the model. | required |
Returns:
Name | Type | Description |
---|---|---|
theta | array-like of shape = number_of_model_elements | The estimated parameters of the model. |
Notes
This is a wrapper class for the scipy.sparse.linalg.lsmr
method.
References
.. [1] scipy, https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.linalg.lsmr.html
Source code in sysidentpy/parameter_estimation/estimators.py
NonNegativeLeastSquares
¶
Bases: BaseEstimator
Solve argmin_x || Ax - b ||_2
for x >= 0
.
This is a wrapper class for the scipy.optimize.nnls
method.
This problem, often called NonNegative Least Squares (NNLS), is a convex optimization problem with convex constraints. It typically arises when the x
models quantities for which only nonnegative values are attainable; such as weights of ingredients, component costs, and so on.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
unbiased | bool | If True, applies an unbiased estimator. Default is False. | False |
uiter | int | Number of iterations for the unbiased estimator. Default is 30. | 30 |
maxiter | int | Maximum number of iterations. Default value is | None |
atol | float | Tolerance value used in the algorithm to assess closeness to zero in the projected residual | None |
Attributes:
Name | Type | Description |
---|---|---|
unbiased | bool | Indicates whether an unbiased estimator is applied. |
uiter | int | Number of iterations for the unbiased estimator. |
maxiter | int | Maximum number of iterations. |
atol | float | Tolerance value for the algorithm. |
References
Lawson C., Hanson R.J., "Solving Least Squares Problems", SIAM, 1995, :doi:10.1137/1.9781611971217
Bro, Rasmus and de Jong, Sijmen, "A Fast Non-Negativity-Constrained Least Squares Algorithm", Journal Of Chemometrics, 1997, :doi:10.1002/(SICI)1099-128X(199709/10)11:5<393::AID-CEM483>3.0.CO;2-L
Examples:
>>> import numpy as np
>>> from sysidentpy.parameter_estimation import NonNegativeLeastSquares
...
>>> A = np.array([[1, 0], [1, 0], [0, 1]])
>>> b = np.array([2, 1, 1])
>>> nnls_solver = NonNegativeLeastSquares()
>>> x = nnls_solver.optimize(A, b)
>>> print(x)
[[1.5]
[1. ]]
Source code in sysidentpy/parameter_estimation/estimators.py
1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 |
|
optimize(psi, y)
¶
Parameter estimation using the NonNegativeLeastSquares algorithm.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
psi | ndarray of floats | The information matrix of the model. | required |
y | ndarray of floats of shape (n_samples, 1) | The data used to train the model. | required |
Returns:
Name | Type | Description |
---|---|---|
theta | array-like of shape = number_of_model_elements | The estimated parameters of the model. |
Notes
This is a wrapper class for the scipy.optimize.nnls
method.
References
.. [1] scipy, https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.nnls.html
Source code in sysidentpy/parameter_estimation/estimators.py
NormalizedLeastMeanSquares
¶
Bases: BaseEstimator
Normalized Least Mean Squares (NLMS) filter for parameter estimation.
The NLMS algorithm is an adaptive filter used to estimate the parameters of a model by minimizing the mean square error between the observed and predicted values. The normalization is used to avoid numerical instability when updating the estimated parameters.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
mu | float | The learning rate or step size for the LMS algorithm. | 0.01 |
eps | float | Normalization factor of the normalized filters. | np.finfo(np.float64).eps |
Attributes:
Name | Type | Description |
---|---|---|
mu | float | The learning rate or step size for the LMS algorithm. |
eps | float | Normalization factor of the normalized filters. |
xi | ndarray or None | The estimation error at each iteration. Initialized as None and updated during optimization. |
Methods:
Name | Description |
---|---|
optimize | Estimate the model parameters using the NLMS filter. |
References
- Hayes, M. H. (2009). Statistical digital signal processing and modeling. John Wiley & Sons.
- Zipf, J. G. F. (2011). ClassificaĆ§Ć£o, anĆ”lise estatĆstica e novas estratĆ©gias de algoritmos LMS de passo variĆ”vel.
- Wikipedia entry on Least Mean Squares: https://en.wikipedia.org/wiki/Least_mean_squares_filter
Source code in sysidentpy/parameter_estimation/estimators.py
731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 |
|
optimize(psi, y)
¶
Parameter estimation using the Normalized Least Mean Squares filter.
The NLMS algorithm updates the parameter estimates recursively as follows:
- Compute the estimation error:
$$ \xi_i = y_i - \psi_i^T \theta_{i-1} $$
- Update the parameter vector:
$$ \theta_i = \theta_{i-1} + 2 \mu \xi_i \frac{\psi_i}{\epsilon + \psi_i^T \psi_i} $$
Parameters:
Name | Type | Description | Default |
---|---|---|---|
psi | ndarray of floats | The information matrix of the model. | required |
y | array-like of shape (n_samples, 1) | The data used to train the model. | required |
Returns:
Name | Type | Description |
---|---|---|
theta | array-like of shape (n_features, 1) | The estimated parameters of the model. |
Source code in sysidentpy/parameter_estimation/estimators.py
NormalizedLeastMeanSquaresSignError
¶
Bases: BaseEstimator
Normalized Least Mean Squares SignError (NLMSSE) filter for parameter estimation.
The NLMSSE algorithm updates the parameter estimates recursively by normalizing the input signal to avoid numerical instability and using the sign of the error vector to adjust the filter coefficients.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
mu | float | The learning rate or step size for the LMS algorithm. | 0.01 |
eps | float | Normalization factor of the normalized filters. | np.finfo(np.float64).eps |
Attributes:
Name | Type | Description |
---|---|---|
mu | float | The learning rate or step size for the LMS algorithm. |
eps | float | Normalization factor of the normalized filters. |
xi | ndarray or None | The estimation error at each iteration. Initialized as None and updated during optimization. |
Methods:
Name | Description |
---|---|
optimize | Estimate the model parameters using the NLMSSE filter. |
References
- Hayes, M. H. (2009). Statistical digital signal processing and modeling. John Wiley & Sons.
- Zipf, J. G. F. (2011). ClassificaĆ§Ć£o, anĆ”lise estatĆstica e novas estratĆ©gias de algoritmos LMS de passo variĆ”vel.
- Wikipedia entry on Least Mean Squares: https://en.wikipedia.org/wiki/Least_mean_squares_filter
Source code in sysidentpy/parameter_estimation/estimators.py
829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 |
|
optimize(psi, y)
¶
Parameter estimation using the Normalized Sign-Error LMS filter.
The NLMSSE algorithm updates the parameter estimates recursively as follows:
- Compute the estimation error:
$$ \xi_i = y_i - \psi_i^T \theta_{i-1} $$
- Update the parameter vector:
$$ \theta_i = \theta_{i-1} + 2 \mu \cdot \text{sign}(\xi_i) \cdot \frac{\psi_i}{\epsilon + \psi_i^T \psi_i} $$
Parameters:
Name | Type | Description | Default |
---|---|---|---|
psi | ndarray of floats | The information matrix of the model. | required |
y | array-like of shape (n_samples, 1) | The data used to train the model. | required |
Returns:
Name | Type | Description |
---|---|---|
theta | array-like of shape (n_features, 1) | The estimated parameters of the model. |
Notes
The normalization is used to avoid numerical instability when updating the estimated parameters and the sign of the error vector is used to change the filter coefficients.
Source code in sysidentpy/parameter_estimation/estimators.py
RecursiveLeastSquares
¶
Bases: BaseEstimator
Recursive Least Squares (RLS) filter for parameter estimation.
The Recursive Least Squares method is used to estimate the parameters of a model by minimizing the sum of the squares of the differences between the observed and predicted values. This method incorporates a forgetting factor to give more weight to recent observations.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
lam | float | Forgetting factor of the Recursive Least Squares method. | 0.98 |
delta | float | Normalization factor of the P matrix. | 0.01 |
unbiased | bool | If True, applies an unbiased estimator. Default is False. | False |
uiter | int | Number of iterations for the unbiased estimator. Default is 30. | 30 |
Attributes:
Name | Type | Description |
---|---|---|
lam | float | Forgetting factor of the Recursive Least Squares method. |
delta | float | Normalization factor of the P matrix. |
xi | ndarray | The estimation error at each iteration. |
theta_evolution | ndarray | Evolution of the estimated parameters over iterations. |
Methods:
Name | Description |
---|---|
optimize | Estimate the model parameters using the Recursive Least Squares method. |
References
- Book (Portuguese): Aguirre, L. A. (2007). IntroduĆ§Ć£o identificaĆ§Ć£o de sistemas: tĆ©cnicas lineares e nĆ£o-lineares aplicadas a sistemas reais. Editora da UFMG. 3a ediĆ§Ć£o.
Source code in sysidentpy/parameter_estimation/estimators.py
317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 |
|
optimize(psi, y)
¶
Estimate the model parameters using the Recursive Least Squares method.
The implementation considers the forgetting factor.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
psi | ndarray of floats | The information matrix of the model. | required |
y | array-like of shape = y_training | The data used to train the model. | required |
Returns:
Name | Type | Description |
---|---|---|
theta | array-like of shape = number_of_model_elements | The estimated parameters of the model. |
Notes
The RLS algorithm updates the parameter estimates recursively as follows:
- Initialize the parameter vector
theta
and the covariance matrixP
:
$$ \theta_0 = \mathbf{0}, \quad P_0 = \frac{1}{\delta} I $$
- For each new observation
(psi_i, y_i)
, update the estimates:
$$ k_i = \frac{\lambda^{-1} P_{i-1} \psi_i}{1 + \lambda^{-1} \psi_i^T P_{i-1} \psi_i} $$
$$ \theta_i = \theta_{i-1} + k_i (y_i - \psi_i^T \theta_{i-1}) $$
$$ P_i = \lambda^{-1} (P_{i-1} - k_i \psi_i^T P_{i-1}) $$
References
- Book (Portuguese): Aguirre, L. A. (2007). IntroduĆ§Ć£o identificaĆ§Ć£o de sistemas: tĆ©cnicas lineares e nĆ£o-lineares aplicadas a sistemas reais. Editora da UFMG. 3a ediĆ§Ć£o.
Source code in sysidentpy/parameter_estimation/estimators.py
RidgeRegression
¶
Bases: BaseEstimator
Ridge Regression estimator using classic and SVD methods.
This class implements Ridge Regression, a type of linear regression that includes an L2 penalty to prevent overfitting. The implementation offers two methods for parameter estimation: a classic approach and an approach based on Singular Value Decomposition (SVD).
Parameters:
Name | Type | Description | Default |
---|---|---|---|
alpha | (float64, optional(default=eps)) | Regularization strength; must be a positive float. Regularization improves the conditioning of the problem and reduces the variance of the estimates. Larger values specify stronger regularization. If the input is a noisy signal, the ridge parameter is likely to be set close to the noise level, at least as a starting point. Entered through the self data structure. | eps |
solver | (str, optional(default=svd)) | Solver to use in the parameter estimation procedure. | 'svd' |
Methods:
Name | Description |
---|---|
ridge_regression_classic | Estimate the model parameters using the classic ridge regression method. |
ridge_regression | Estimate the model parameters using the SVD-based ridge regression method. |
optimize | Optimize the model parameters using the chosen method (SVD or classic). |
References
- Wikipedia entry on ridge regression https://en.wikipedia.org/wiki/Ridge_regression
- D. J. Gauthier, E. Bollt, A. Griffith, W. A. S. Barbosa, 'Next generation reservoir computing,' Nat. Commun. 12, 5564 (2021). https://www.nature.com/articles/s41467-021-25801-2
- Hoerl, A. E.; Kennard, R. W. Ridge regression: applications to nonorthogonal problems. Technometrics, Taylor & Francis, v. 12, n. 1, p. 69-82, 1970.
- StackExchange: whuber. The proof of shrinking coefficients using ridge regression through "spectral decomposition". Cross Validated, accessed 21 September 2023, https://stats.stackexchange.com/q/220324
Source code in sysidentpy/parameter_estimation/estimators.py
100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 |
|
ridge_regression(psi, y)
¶
Estimate the model parameters using SVD and Ridge Regression method.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
psi | ndarray of floats | The information matrix of the model. | required |
y | array-like of shape = y_training | The data used to training the model. | required |
Returns:
Name | Type | Description |
---|---|---|
theta | array-like of shape = number_of_model_elements | The estimated parameters of the model. |
References
-
Manuscript: Hoerl, A. E.; Kennard, R. W. Ridge regression: applications to nonorthogonal problems. Technometrics, Taylor & Francis, v. 12, n. 1, p. 69-82, 1970.
-
StackExchange: whuber. The proof of shrinking coefficients using ridge regression through "spectral decomposition". Cross Validated, accessed 21 September 2023, https://stats.stackexchange.com/q/220324
Source code in sysidentpy/parameter_estimation/estimators.py
ridge_regression_classic(psi, y)
¶
Estimate the model parameters using ridge regression.
Based on the least_squares module and uses the same data format but you need to pass alpha in the call to FROLS.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
psi | ndarray of floats | The information matrix of the model. | required |
y | array-like of shape = y_training | The data used to training the model. | required |
Returns:
Name | Type | Description |
---|---|---|
theta | array-like of shape = number_of_model_elements | The estimated parameters of the model. |
References
- Wikipedia entry on ridge regression https://en.wikipedia.org/wiki/Ridge_regression
alpha multiplied by the identity matrix (np.eye) favors models (theta) that have small size using an L2 norm. This prevents over fitting of the model. For applications where preventing overfitting is important, see, for example, D. J. Gauthier, E. Bollt, A. Griffith, W. A. S. Barbosa, 'Next generation reservoir computing,' Nat. Commun. 12, 5564 (2021). https://www.nature.com/articles/s41467-021-25801-2
Source code in sysidentpy/parameter_estimation/estimators.py
TotalLeastSquares
¶
Bases: BaseEstimator
Estimate the model parameters using the Total Least Squares (TLS) method.
The Total Least Squares method is used to solve the problem of fitting a model to data when both the independent variables (psi) and the dependent variable (y) are subject to errors. This method minimizes the orthogonal distances from the data points to the fitted model, which is more appropriate when errors are present in all variables.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
unbiased | bool | If True, applies an unbiased estimator. Default is False. | False |
uiter | int | Number of iterations for the unbiased estimator. Default is 30. | 30 |
References
- Golub, G. H., & Van Loan, C. F. (1980). An analysis of the total least squares problem. SIAM journal on numerical analysis, 17(6), 883-893.
- Markovsky, I., & Van Huffel, S. (2007). Overview of total least-squares methods. Signal processing, 87(10), 2283-2302. https://eprints.soton.ac.uk/263855/1/tls_overview.pdf
- Wikipedia entry on Total Least Squares: https://en.wikipedia.org/wiki/Total_least_squares
Source code in sysidentpy/parameter_estimation/estimators.py
optimize(psi, y)
¶
Estimate the model parameters using the Total Least Squares method.
The TLS method solves the following problem:
where \(E\) and \(f\) are the error matrices for \(psi\) and \(y\) respectively, and \(\| \cdot \|_F\) denotes the Frobenius norm.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
psi | ndarray of floats | The information matrix of the model. | required |
y | array-like of shape (n_samples, 1) | The data used to train the model. | required |
Returns:
Name | Type | Description |
---|---|---|
theta | array-like of shape (n_features, 1) | The estimated parameters of the model. |