Documentation for Neural NARX
¶
Build Polynomial NARMAX Models.
NARXNN
¶
Bases: BaseMSS
NARX Neural Network model build on top of Pytorch.
Currently we support a Series-Parallel (open-loop) Feedforward Network training process, which make the training process easier, and we convert the NARX network from Series-Parallel to the Parallel (closed-loop) configuration for prediction.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
ylag | int | The maximum lag of the output. | 2 |
xlag | int | The maximum lag of the input. | 2 |
basis_function | Defines which basis function will be used in the model. | Polynomial() | |
model_type | The user can choose "NARMAX", "NAR" and "NFIR" models | 'NARMAX' | |
batch_size | int | Size of mini-batches of data for stochastic optimizers | 100 |
learning_rate | float | Learning rate schedule for weight updates | 0.01 |
epochs | int | Number of training epochs | 100 |
loss_func | str | Select the loss function available in torch.nn.functional | 'mse_loss' |
optimizer | str | The solver for weight optimization | 'SGD' |
optim_params | dict | Optional parameters for the optimizer | None |
net | default=None | The defined network using nn.Module | None |
verbose | bool | Show the training and validation loss at each iteration | False |
Examples:
>>> from torch import nn
>>> import numpy as np
>>> import pandas as pd
>>> import matplotlib.pyplot as plt
>>> from sysidentpy.metrics import mean_squared_error
>>> from sysidentpy.utils.generate_data import get_siso_data
>>> from sysidentpy.neural_network import NARXNN
>>> from sysidentpy.utils.generate_data import get_siso_data
>>> x_train, x_valid, y_train, y_valid = get_siso_data(
... n=1000,
... colored_noise=False,
... sigma=0.01,
... train_percentage=80
... )
>>> narx_nn = NARXNN(
... ylag=2,
... xlag=2,
... basis_function=basis_function,
... model_type="NARMAX",
... loss_func='mse_loss',
... optimizer='Adam',
... epochs=200,
... verbose=False,
... optim_params={'betas': (0.9, 0.999), 'eps': 1e-05} # for the optimizer
... )
>>> class Net(nn.Module):
... def __init__(self):
... super().__init__()
... self.lin = nn.Linear(4, 10)
... self.lin2 = nn.Linear(10, 10)
... self.lin3 = nn.Linear(10, 1)
... self.tanh = nn.Tanh()
>>>
... def forward(self, xb):
... z = self.lin(xb)
... z = self.tanh(z)
... z = self.lin2(z)
... z = self.tanh(z)
... z = self.lin3(z)
... return z
>>>
>>> narx_nn.net = Net()
>>> neural_narx.fit(X=x_train, y=y_train)
>>> yhat = neural_narx.predict(X=x_valid, y=y_valid)
>>> print(mean_squared_error(y_valid, yhat))
0.000131
References
- Manuscript: Orthogonal least squares methods and their application to non-linear system identification https://eprints.soton.ac.uk/251147/1/778742007_content.pdf`_
Source code in sysidentpy/neural_network/narx_nn.py
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 |
|
_basis_function_n_step_prediction(X, y, steps_ahead, forecast_horizon)
¶
Perform the n-steps-ahead prediction of a model.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
y | array-like of shape = max_lag | Initial conditions values of the model to start recursive process. | required |
X | ndarray of floats of shape = n_samples | Vector with input values to be used in model simulation. | required |
Returns:
Name | Type | Description |
---|---|---|
yhat | ndarray of floats | The n-steps-ahead predicted values of the model. |
Source code in sysidentpy/neural_network/narx_nn.py
_model_prediction(X, y_initial, forecast_horizon=None)
¶
Perform the infinity steps-ahead simulation of a model.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
y_initial | array-like of shape = max_lag | Number of initial conditions values of output to start recursive process. | required |
X | ndarray of floats of shape = n_samples | Vector with input values to be used in model simulation. | required |
Returns:
Name | Type | Description |
---|---|---|
yhat | ndarray of floats | The predicted values of the model. |
Source code in sysidentpy/neural_network/narx_nn.py
_n_step_ahead_prediction(X, y, steps_ahead)
¶
Perform the n-steps-ahead prediction of a model.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
y | array-like of shape = max_lag | Initial conditions values of the model to start recursive process. | required |
X | ndarray of floats of shape = n_samples | Vector with input values to be used in model simulation. | required |
Returns:
Name | Type | Description |
---|---|---|
yhat | ndarray of floats | The n-steps-ahead predicted values of the model. |
Source code in sysidentpy/neural_network/narx_nn.py
_one_step_ahead_prediction(X, y)
¶
Perform the 1-step-ahead prediction of a model.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
y | array-like of shape = max_lag | Initial conditions values of the model to start recursive process. | required |
X | ndarray of floats of shape = n_samples | Vector with input values to be used in model simulation. | required |
Returns:
Name | Type | Description |
---|---|---|
yhat | ndarray of floats | The 1-step-ahead predicted values of the model. |
Source code in sysidentpy/neural_network/narx_nn.py
_validate_params()
¶
Validate input params.
Source code in sysidentpy/neural_network/narx_nn.py
convert_to_tensor(reg_matrix, y)
¶
Return the lagged matrix and the y values given the maximum lags.
Based on Pytorch official docs: https://pytorch.org/tutorials/beginner/nn_tutorial.html
Parameters:
Name | Type | Description | Default |
---|---|---|---|
reg_matrix | ndarray of floats | The information matrix of the model. | required |
y | ndarray of floats | The output data | required |
Returns:
Name | Type | Description |
---|---|---|
Tensor | tensor | tensors that have the same size of the first dimension. |
Source code in sysidentpy/neural_network/narx_nn.py
data_transform(X, y)
¶
Return the data transformed in tensors using Dataloader.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
X | ndarray of floats | The input data. | required |
y | ndarray of floats | The output data. | required |
Returns:
Name | Type | Description |
---|---|---|
Tensors | Dataloader | |
Source code in sysidentpy/neural_network/narx_nn.py
define_opt()
¶
Define the optimizer using the user parameters.
fit(*, X=None, y=None, X_test=None, y_test=None)
¶
Train a NARX Neural Network model.
This is an training pipeline that allows a friendly usage by the user. The training pipeline was based on https://pytorch.org/tutorials/beginner/nn_tutorial.html
Parameters:
Name | Type | Description | Default |
---|---|---|---|
X | ndarray of floats | The input data to be used in the training process. | None |
y | ndarray of floats | The output data to be used in the training process. | None |
X_test | ndarray of floats | The input data to be used in the prediction process. | None |
y_test | ndarray of floats | The output data (initial conditions) to be used in the prediction process. | None |
Returns:
Name | Type | Description |
---|---|---|
net | Module | The model fitted. |
train_loss | ndarrays of floats | The training loss of each batch |
val_loss | ndarrays of floats | The validation loss of each batch |
Source code in sysidentpy/neural_network/narx_nn.py
get_data(train_ds)
¶
Return the lagged matrix and the y values given the maximum lags.
Based on Pytorch official docs: https://pytorch.org/tutorials/beginner/nn_tutorial.html
Parameters:
Name | Type | Description | Default |
---|---|---|---|
train_ds | Tensors that have the same size of the first dimension. | required |
Returns:
Name | Type | Description |
---|---|---|
Dataloader | dataloader | tensors that have the same size of the first dimension. |
Source code in sysidentpy/neural_network/narx_nn.py
loss_batch(X, y, opt=None)
¶
Compute the loss for one batch.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
X | ndarray of floats | The regressor matrix. | required |
y | ndarray of floats | The output data. | required |
opt | Torch optimizer chosen by the user. | None |
Returns:
Name | Type | Description |
---|---|---|
loss | float | The loss of one batch. |
Source code in sysidentpy/neural_network/narx_nn.py
predict(*, X=None, y=None, steps_ahead=None, forecast_horizon=None)
¶
Return the predicted given an input and initial values.
The predict function allows a friendly usage by the user. Given a trained model, predict values given a new set of data.
This method accept y values mainly for prediction n-steps ahead (to be implemented in the future).
Currently we only support infinity-steps-ahead prediction, but run 1-step-ahead prediction manually is straightforward.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
X | ndarray of floats | The input data to be used in the prediction process. | None |
y | ndarray of floats | The output data to be used in the prediction process. | None |
steps_ahead | int(default=None) | The user can use free run simulation, one-step ahead prediction and n-step ahead prediction. | None |
forecast_horizon | int | The number of predictions over the time. | None |
Returns:
Name | Type | Description |
---|---|---|
yhat | ndarray of floats | The predicted values of the model. |
Source code in sysidentpy/neural_network/narx_nn.py
split_data(X, y)
¶
Return the lagged matrix and the y values given the maximum lags.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
X | ndarray of floats | The input data. | required |
y | ndarray of floats | The output data. | required |
Returns:
Name | Type | Description |
---|---|---|
y | ndarray of floats | The y values considering the lags. |
reg_matrix | ndarray of floats | The information matrix of the model. |