Documentation for Simulation
¶
Simulation methods for NARMAX models.
SimulateNARMAX
¶
Bases: BaseMSS
Simulation of Polynomial NARMAX model.
The NARMAX model is described as:
where \(n_y\in \mathbb{N}^*\), \(n_x \in \mathbb{N}\), \(n_e \in \mathbb{N}\), are the maximum lags for the system output and input respectively; \(x_k \in \mathbb{R}^{n_x}\) is the system input and \(y_k \in \mathbb{R}^{n_y}\) is the system output at discrete time \(k \in \mathbb{N}^n\); \(e_k \in \mathbb{R}^{n_e}\) stands for uncertainties and possible noise at discrete time \(k\). In this case, \(\mathcal{F}^\ell\) is some nonlinear function of the input and output regressors with nonlinearity degree \(\ell \in \mathbb{N}\) and \(d\) is a time delay typically set to \(d=1\).
Parameters¶
estimator : str, default="least_squares" The parameter estimation method. estimate_parameter : bool, default=False Whether to use a method for parameter estimation. Must be True if the user do not enter the pre-estimated parameters. Note that we define a specific set of noise regressors. calculate_err : bool, default=False Whether to use a ERR algorithm to the pre-defined regressors. eps : float Normalization factor of the normalized filters.
Examples¶
import numpy as np import matplotlib.pyplot as plt from sysidentpy.simulation import SimulateNARMAX from sysidentpy.basis_function._basis_function import Polynomial from sysidentpy.metrics import root_relative_squared_error from sysidentpy.utils.generate_data import get_miso_data, get_siso_data x_train, x_valid, y_train, y_valid = get_siso_data(n=1000, ... colored_noise=True, ... sigma=0.2, ... train_percentage=90) basis_function = Polynomial(degree=2) s = SimulateNARMAX(basis_function=basis_function) model = np.array( ... [ ... [1001, 0], # y(k-1) ... [2001, 1001], # x1(k-1)y(k-1) ... [2002, 0], # x1(k-2) ... ] ... )
theta must be a numpy array of shape (n, 1) where n¶
... is the number of regressors theta = np.array([[0.2, 0.9, 0.1]]).T yhat = s.simulate( ... X_test=x_test, ... y_test=y_test, ... model_code=model, ... theta=theta, ... ) r = pd.DataFrame( ... results( ... model.final_model, model.theta, model.err, ... model.n_terms, err_precision=8, dtype='sci' ... ), ... columns=['Regressors', 'Parameters', 'ERR']) print® Regressors Parameters ERR 0 x1(k-2) 0.9000 0.0 1 y(k-1) 0.1999 0.0 2 x1(k-1)y(k-1) 0.1000 0.0
Source code in sysidentpy/simulation/_simulation.py
56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 |
|
error_reduction_ratio(psi, y, process_term_number, regressor_code)
¶
Perform the Error Reduction Ration algorithm.
Parameters¶
psi : array_like The information matrix of the model. y : array-like The target data used in the identification process. process_term_number : int Number of Process Terms defined by the user. regressor_code : array_like The regressor code list given the xlag and ylag for a MISO model.
Returns¶
model_code : array_like Model defined by the user to simulate. err : array-like The respective ERR calculated for each regressor. piv : array-like Contains the index to put the regressors in the correct order based on err values. psi_orthogonal : array_like The updated and orthogonal information matrix.
References¶
- Manuscript: Orthogonal least squares methods and their application to non-linear system identification https://eprints.soton.ac.uk/251147/1/778742007_content.pdf
- Manuscript (portuguese): Identificação de Sistemas não Lineares Utilizando Modelos NARMAX Polinomiais - Uma Revisão e Novos Resultados
Source code in sysidentpy/simulation/_simulation.py
fit(*, X=None, y=None)
¶
predict(*, X=None, y=None, steps_ahead=None, forecast_horizon=None)
¶
Return the predicted values given an input.
The predict function allows a friendly usage by the user. Given a previously trained model, predict values given a new set of data.
This method accept y values mainly for prediction n-steps ahead (to be implemented in the future)
Parameters¶
X : array_like The input data to be used in the prediction process. y : array_like The output data to be used in the prediction process. steps_ahead : int The user can use free run simulation, one-step ahead prediction and n-step ahead prediction. The default is None forecast_horizon : int The number of predictions over the time. The default is None
Returns¶
yhat : array_like The predicted values of the model.
Source code in sysidentpy/simulation/_simulation.py
simulate(*, X_train=None, y_train=None, X_test=None, y_test=None, model_code=None, steps_ahead=None, theta=None, forecast_horizon=None)
¶
Simulate a model defined by the user.
Parameters¶
X_train : array_like The input data to be used in the training process. y_train : array_like The output data to be used in the training process. X_test : array_like The input data to be used in the prediction process. y_test : array_like The output data (initial conditions) to be used in the prediction process. model_code : array_like Flattened list of input or output regressors. steps_ahead : int or None, optional The forecast horizon. Default is None theta : array-like The parameters of the model. forecast_horizon : int or None, optional The forecast horizon used in NARMA models and variants.
Returns¶
yhat : array_like The predicted values of the model.
Source code in sysidentpy/simulation/_simulation.py
211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 |
|