Skip to content

Documentation for Neural NARX

Build Polynomial NARMAX Models.

NARXNN

Bases: BaseMSS

NARX Neural Network model build on top of Pytorch.

Currently we support a Series-Parallel (open-loop) Feedforward Network training process, which make the training process easier, and we convert the NARX network from Series-Parallel to the Parallel (closed-loop) configuration for prediction.

Parameters

ylag : int, default=2 The maximum lag of the output. xlag : int, default=2 The maximum lag of the input. basis_function: Polynomial or Fourier basis functions Defines which basis function will be used in the model. model_type: str, default="NARMAX" The user can choose "NARMAX", "NAR" and "NFIR" models batch_size : int, default=100 Size of mini-batches of data for stochastic optimizers learning_rate : float, default=0.01 Learning rate schedule for weight updates epochs : int, default=100 Number of training epochs loss_func : str, default='mse_loss' Select the loss function available in torch.nn.functional optimizer : str, default='SGD' The solver for weight optimization optim_params : dict, default=None Optional parameters for the optimizer net : default=None The defined network using nn.Module verbose : bool, default=False Show the training and validation loss at each iteration

Examples

from torch import nn import numpy as np import pandas as pd import matplotlib.pyplot as plt from sysidentpy.metrics import mean_squared_error from sysidentpy.utils.generate_data import get_siso_data from sysidentpy.neural_network import NARXNN from sysidentpy.utils.generate_data import get_siso_data x_train, x_valid, y_train, y_valid = get_siso_data( ... n=1000, ... colored_noise=False, ... sigma=0.01, ... train_percentage=80 ... ) narx_nn = NARXNN( ... ylag=2, ... xlag=2, ... basis_function=basis_function, ... model_type="NARMAX", ... loss_func='mse_loss', ... optimizer='Adam', ... epochs=200, ... verbose=False, ... optim_params={'betas': (0.9, 0.999), 'eps': 1e-05} # for the optimizer ... ) class Net(nn.Module): ... def init(self): ... super().init() ... self.lin = nn.Linear(4, 10) ... self.lin2 = nn.Linear(10, 10) ... self.lin3 = nn.Linear(10, 1) ... self.tanh = nn.Tanh()

... def forward(self, xb): ... z = self.lin(xb) ... z = self.tanh(z) ... z = self.lin2(z) ... z = self.tanh(z) ... z = self.lin3(z) ... return z

narx_nn.net = Net() neural_narx.fit(X=x_train, y=y_train) yhat = neural_narx.predict(X=x_valid, y=y_valid) print(mean_squared_error(y_valid, yhat)) 0.000131

References

Source code in sysidentpy/neural_network/narx_nn.py
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
class NARXNN(BaseMSS):
    """NARX Neural Network model build on top of Pytorch.

    Currently we support a Series-Parallel (open-loop) Feedforward Network training
    process, which make the training process easier, and we convert the
    NARX network from Series-Parallel to the Parallel (closed-loop) configuration for
    prediction.

    Parameters
    ----------
    ylag : int, default=2
        The maximum lag of the output.
    xlag : int, default=2
        The maximum lag of the input.
    basis_function: Polynomial or Fourier basis functions
        Defines which basis function will be used in the model.
    model_type: str, default="NARMAX"
        The user can choose "NARMAX", "NAR" and "NFIR" models
    batch_size : int, default=100
        Size of mini-batches of data for stochastic optimizers
    learning_rate : float, default=0.01
        Learning rate schedule for weight updates
    epochs : int, default=100
        Number of training epochs
    loss_func : str, default='mse_loss'
        Select the loss function available in torch.nn.functional
    optimizer : str, default='SGD'
        The solver for weight optimization
    optim_params : dict, default=None
        Optional parameters for the optimizer
    net : default=None
        The defined network using nn.Module
    verbose : bool, default=False
        Show the training and validation loss at each iteration

    Examples
    --------
    >>> from torch import nn
    >>> import numpy as np
    >>> import pandas as pd
    >>> import matplotlib.pyplot as plt
    >>> from sysidentpy.metrics import mean_squared_error
    >>> from sysidentpy.utils.generate_data import get_siso_data
    >>> from sysidentpy.neural_network import NARXNN
    >>> from sysidentpy.utils.generate_data import get_siso_data
    >>> x_train, x_valid, y_train, y_valid = get_siso_data(
    ...     n=1000,
    ...     colored_noise=False,
    ...     sigma=0.01,
    ...     train_percentage=80
    ... )
    >>> narx_nn = NARXNN(
    ...     ylag=2,
    ...     xlag=2,
    ...     basis_function=basis_function,
    ...     model_type="NARMAX",
    ...     loss_func='mse_loss',
    ...     optimizer='Adam',
    ...     epochs=200,
    ...     verbose=False,
    ...     optim_params={'betas': (0.9, 0.999), 'eps': 1e-05} # for the optimizer
    ... )
    >>> class Net(nn.Module):
    ...     def __init__(self):
    ...         super().__init__()
    ...         self.lin = nn.Linear(4, 10)
    ...         self.lin2 = nn.Linear(10, 10)
    ...         self.lin3 = nn.Linear(10, 1)
    ...         self.tanh = nn.Tanh()
    >>>
    ...     def forward(self, xb):
    ...         z = self.lin(xb)
    ...         z = self.tanh(z)
    ...         z = self.lin2(z)
    ...         z = self.tanh(z)
    ...         z = self.lin3(z)
    ...         return z
    >>>
    >>> narx_nn.net = Net()
    >>> neural_narx.fit(X=x_train, y=y_train)
    >>> yhat = neural_narx.predict(X=x_valid, y=y_valid)
    >>> print(mean_squared_error(y_valid, yhat))
    0.000131

    References
    ----------
    - Manuscript: Orthogonal least squares methods and their application
       to non-linear system identification
       <https://eprints.soton.ac.uk/251147/1/778742007_content.pdf>`_

    """

    def __init__(
        self,
        *,
        ylag=1,
        xlag=1,
        model_type="NARMAX",
        basis_function=Polynomial(),
        batch_size=100,
        learning_rate=0.01,
        epochs=200,
        loss_func="mse_loss",
        optimizer="Adam",
        net=None,
        train_percentage=80,
        verbose=False,
        optim_params=None,
        device="cpu",
    ):
        self.ylag = ylag
        self.xlag = xlag
        self.basis_function = basis_function
        self.model_type = model_type
        self.build_matrix = self.get_build_io_method(model_type)
        self.non_degree = basis_function.degree
        self.max_lag = self._get_max_lag()
        self.batch_size = batch_size
        self.learning_rate = learning_rate
        self.epochs = epochs
        self.loss_func = getattr(F, loss_func)
        self.optimizer = optimizer
        self.net = net
        self.train_percentage = train_percentage
        self.verbose = verbose
        self.optim_params = optim_params
        self.device = self._check_cuda(device)
        self.regressor_code = None
        self.train_loss = None
        self.val_loss = None
        self.ensemble = None
        self.n_inputs = None
        self.final_model = None
        self._validate_params()

    def _validate_params(self):
        """Validate input params."""
        if not isinstance(self.batch_size, int) or self.batch_size < 1:
            raise ValueError(
                f"bacth_size must be integer and > zero. Got {self.batch_size}"
            )

        if not isinstance(self.epochs, int) or self.epochs < 1:
            raise ValueError(f"epochs must be integer and > zero. Got {self.epochs}")

        if not isinstance(self.train_percentage, int) or self.train_percentage < 0:
            raise ValueError(
                f"bacth_size must be integer and > zero. Got {self.train_percentage}"
            )

        if not isinstance(self.verbose, bool):
            raise TypeError(f"verbose must be False or True. Got {self.verbose}")

        if isinstance(self.ylag, int) and self.ylag < 1:
            raise ValueError(f"ylag must be integer and > zero. Got {self.ylag}")

        if isinstance(self.xlag, int) and self.xlag < 1:
            raise ValueError(f"xlag must be integer and > zero. Got {self.xlag}")

        if not isinstance(self.xlag, (int, list)):
            raise ValueError(f"xlag must be integer and > zero. Got {self.xlag}")

        if not isinstance(self.ylag, (int, list)):
            raise ValueError(f"ylag must be integer and > zero. Got {self.ylag}")

        if self.model_type not in ["NARMAX", "NAR", "NFIR"]:
            raise ValueError(
                f"model_type must be NARMAX, NAR or NFIR. Got {self.model_type}"
            )

    def _check_cuda(self, device):
        if device not in ["cpu", "cuda"]:
            raise ValueError(f"device must be 'cpu' or 'cuda'. Got {device}")

        if device == "cpu":
            return torch.device("cpu")

        if device == "cuda":
            if torch.cuda.is_available():
                return torch.device("cuda")

            warnings.warn(
                "No CUDA available. We set the device as CPU",
                stacklevel=2,
            )

        return torch.device("cpu")

    def define_opt(self):
        """Define the optimizer using the user parameters."""
        opt = getattr(optim, self.optimizer)
        return opt(self.net.parameters(), lr=self.learning_rate, **self.optim_params)

    def loss_batch(self, X, y, opt=None):
        """Compute the loss for one batch.

        Parameters
        ----------
        X : ndarray of floats
            The regressor matrix.
        y : ndarray of floats
            The output data.
        opt: Torch optimizer
            Torch optimizer chosen by the user.

        Returns
        -------
        loss : float
            The loss of one batch.

        """
        loss = self.loss_func(self.net(X), y)

        if opt is not None:
            opt.zero_grad()
            loss.backward()
            opt.step()

        return loss.item(), len(X)

    def split_data(self, X, y):
        """Return the lagged matrix and the y values given the maximum lags.

        Parameters
        ----------
        X : ndarray of floats
            The input data.
        y : ndarray of floats
            The output data.

        Returns
        -------
        y : ndarray of floats
            The y values considering the lags.
        reg_matrix : ndarray of floats
            The information matrix of the model.

        """
        if y is None:
            raise ValueError("y cannot be None")

        self.max_lag = self._get_max_lag()
        lagged_data = self.build_matrix(X, y)

        if isinstance(self.basis_function, Polynomial):
            reg_matrix = self.basis_function.fit(
                lagged_data,
                self.max_lag,
                self.ylag,
                self.xlag,
                self.model_type,
                predefined_regressors=None,
            )
            reg_matrix = reg_matrix[:, 1:]
        else:
            reg_matrix = self.basis_function.fit(
                lagged_data,
                self.max_lag,
                self.ylag,
                self.xlag,
                self.model_type,
                predefined_regressors=None,
            )

        if X is not None:
            self.n_inputs = _num_features(X)
        else:
            self.n_inputs = 1  # only used to create the regressor space base

        self.regressor_code = self.regressor_space(self.n_inputs)
        repetition = len(reg_matrix)
        if not isinstance(self.basis_function, Polynomial):
            tmp_code = np.sort(
                np.tile(self.regressor_code[1:, :], (repetition, 1)),
                axis=0,
            )
            self.regressor_code = tmp_code[list(range(len(reg_matrix))), :].copy()
        else:
            self.regressor_code = self.regressor_code[
                1:
            ]  # removes the column of the constant

        self.final_model = self.regressor_code.copy()
        reg_matrix = np.atleast_1d(reg_matrix).astype(np.float32)

        y = np.atleast_1d(y[self.max_lag :]).astype(np.float32)
        return reg_matrix, y

    def convert_to_tensor(self, reg_matrix, y):
        """Return the lagged matrix and the y values given the maximum lags.

        Based on Pytorch official docs:
        https://pytorch.org/tutorials/beginner/nn_tutorial.html

        Parameters
        ----------
        reg_matrix : ndarray of floats
            The information matrix of the model.
        y : ndarray of floats
            The output data

        Returns
        -------
        Tensor: tensor
            tensors that have the same size of the first dimension.

        """
        reg_matrix, y = map(torch.tensor, (reg_matrix, y))
        return TensorDataset(reg_matrix, y)

    def get_data(self, train_ds):
        """Return the lagged matrix and the y values given the maximum lags.

        Based on Pytorch official docs:
        https://pytorch.org/tutorials/beginner/nn_tutorial.html

        Parameters
        ----------
        train_ds: tensor
            Tensors that have the same size of the first dimension.

        Returns
        -------
        Dataloader: dataloader
            tensors that have the same size of the first dimension.

        """
        pin_memory = False if self.device.type == "cpu" else True
        return DataLoader(
            train_ds, batch_size=self.batch_size, pin_memory=pin_memory, shuffle=False
        )

    def data_transform(self, X, y):
        """Return the data transformed in tensors using Dataloader.

        Parameters
        ----------
        X : ndarray of floats
            The input data.
        y : ndarray of floats
            The output data.

        Returns
        -------
        Tensors : Dataloader

        """
        if y is None:
            raise ValueError("y cannot be None")

        x_train, y_train = self.split_data(X, y)
        train_ds = self.convert_to_tensor(x_train, y_train)
        train_dl = self.get_data(train_ds)
        return train_dl

    def fit(self, *, X=None, y=None, X_test=None, y_test=None):
        """Train a NARX Neural Network model.

        This is an training pipeline that allows a friendly usage
        by the user. The training pipeline was based on
        https://pytorch.org/tutorials/beginner/nn_tutorial.html

        Parameters
        ----------
        X : ndarray of floats
            The input data to be used in the training process.
        y : ndarray of floats
            The output data to be used in the training process.
        X_test : ndarray of floats
            The input data to be used in the prediction process.
        y_test : ndarray of floats
            The output data (initial conditions) to be used in the prediction process.

        Returns
        -------
        net : nn.Module
            The model fitted.
        train_loss: ndarrays of floats
            The training loss of each batch
        val_loss: ndarrays of floats
            The validation loss of each batch

        """
        train_dl = self.data_transform(X, y)
        if self.verbose:
            if X_test is None or y_test is None:
                raise ValueError(
                    "X_test and y_test cannot be None if you set verbose=True"
                )
            valid_dl = self.data_transform(X_test, y_test)

        opt = self.define_opt()
        self.val_loss = []
        self.train_loss = []
        for epoch in range(self.epochs):
            self.net.train()
            for input_data, output_data in train_dl:
                X, y = input_data.to(self.device), output_data.to(self.device)
                self.loss_batch(X, y, opt=opt)

            if self.verbose:
                train_losses, train_nums = zip(
                    *[
                        self.loss_batch(X.to(self.device), y.to(self.device))
                        for X, y in train_dl
                    ]
                )
                self.train_loss.append(
                    np.sum(np.multiply(train_losses, train_nums)) / np.sum(train_nums)
                )

                self.net.eval()
                with torch.no_grad():
                    losses, nums = zip(
                        *[
                            self.loss_batch(X.to(self.device), y.to(self.device))
                            for X, y in valid_dl
                        ]
                    )
                self.val_loss.append(np.sum(np.multiply(losses, nums)) / np.sum(nums))
                logging.info(
                    "Train metrics: %s | Validation metrics: %s",
                    self.train_loss[epoch],
                    self.val_loss[epoch],
                )
        return self

    def predict(self, *, X=None, y=None, steps_ahead=None, forecast_horizon=None):
        """Return the predicted given an input and initial values.

        The predict function allows a friendly usage by the user.
        Given a trained model, predict values given
        a new set of data.

        This method accept y values mainly for prediction n-steps ahead
        (to be implemented in the future).

        Currently we only support infinity-steps-ahead prediction,
        but run 1-step-ahead prediction manually is straightforward.

        Parameters
        ----------
        X : ndarray of floats
            The input data to be used in the prediction process.
        y : ndarray of floats
            The output data to be used in the prediction process.
        steps_ahead : int (default = None)
            The user can use free run simulation, one-step ahead prediction
            and n-step ahead prediction.
        forecast_horizon : int, default=None
            The number of predictions over the time.

        Returns
        -------
        yhat : ndarray of floats
            The predicted values of the model.

        """
        if isinstance(self.basis_function, Polynomial):
            if steps_ahead is None:
                return self._model_prediction(X, y, forecast_horizon=forecast_horizon)
            if steps_ahead == 1:
                return self._one_step_ahead_prediction(X, y)

            _check_positive_int(steps_ahead, "steps_ahead")
            return self._n_step_ahead_prediction(X, y, steps_ahead=steps_ahead)

        if steps_ahead is None:
            return self._basis_function_predict(X, y, forecast_horizon=forecast_horizon)
        if steps_ahead == 1:
            return self._one_step_ahead_prediction(X, y)

        return self._basis_function_n_step_prediction(
            X, y, steps_ahead=steps_ahead, forecast_horizon=forecast_horizon
        )

    def _one_step_ahead_prediction(self, X, y):
        """Perform the 1-step-ahead prediction of a model.

        Parameters
        ----------
        y : array-like of shape = max_lag
            Initial conditions values of the model
            to start recursive process.
        X : ndarray of floats of shape = n_samples
            Vector with input values to be used in model simulation.

        Returns
        -------
        yhat : ndarray of floats
               The 1-step-ahead predicted values of the model.

        """
        lagged_data = self.build_matrix(X, y)

        if isinstance(self.basis_function, Polynomial):
            X_base = self.basis_function.transform(
                lagged_data, self.max_lag, self.ylag, self.xlag, self.model_type
            )
            X_base = X_base[:, 1:]
        else:
            X_base = self.basis_function.transform(
                lagged_data, self.max_lag, self.ylag, self.xlag, self.model_type
            )

        yhat = np.zeros(X.shape[0], dtype=float)
        X_base = np.atleast_1d(X_base).astype(np.float32)
        yhat = yhat.astype(np.float32)
        x_valid, _ = map(torch.tensor, (X_base, yhat))
        yhat = self.net(x_valid.to(self.device)).detach().cpu().numpy()
        yhat = np.concatenate([y.ravel()[: self.max_lag].flatten(), yhat.ravel()])
        return yhat.reshape(-1, 1)

    def _n_step_ahead_prediction(self, X, y, steps_ahead):
        """Perform the n-steps-ahead prediction of a model.

        Parameters
        ----------
        y : array-like of shape = max_lag
            Initial conditions values of the model
            to start recursive process.
        X : ndarray of floats of shape = n_samples
            Vector with input values to be used in model simulation.

        Returns
        -------
        yhat : ndarray of floats
               The n-steps-ahead predicted values of the model.

        """
        if len(y) < self.max_lag:
            raise ValueError(
                "Insufficient initial condition elements! Expected at least"
                f" {self.max_lag} elements."
            )

        yhat = np.zeros(X.shape[0], dtype=float)
        yhat.fill(np.nan)
        yhat[: self.max_lag] = y[: self.max_lag, 0]
        i = self.max_lag
        X = X.reshape(-1, self.n_inputs)
        while i < len(y):
            k = int(i - self.max_lag)
            if i + steps_ahead > len(y):
                steps_ahead = len(y) - i  # predicts the remaining values

            yhat[i : i + steps_ahead] = self._model_prediction(
                X[k : i + steps_ahead], y[k : i + steps_ahead]
            )[-steps_ahead:].ravel()

            i += steps_ahead

        yhat = yhat.ravel()
        return yhat.reshape(-1, 1)

    def _model_prediction(self, X, y_initial, forecast_horizon=None):
        """Perform the infinity steps-ahead simulation of a model.

        Parameters
        ----------
        y_initial : array-like of shape = max_lag
            Number of initial conditions values of output
            to start recursive process.
        X : ndarray of floats of shape = n_samples
            Vector with input values to be used in model simulation.

        Returns
        -------
        yhat : ndarray of floats
               The predicted values of the model.

        """
        if self.model_type in ["NARMAX", "NAR"]:
            return self._narmax_predict(X, y_initial, forecast_horizon)

        if self.model_type == "NFIR":
            return self._nfir_predict(X, y_initial)

        raise ValueError(
            f"model_type must be NARMAX, NAR or NFIR. Got {self.model_type}"
        )

    def _narmax_predict(self, X, y_initial, forecast_horizon):
        if len(y_initial) < self.max_lag:
            raise ValueError(
                "Insufficient initial condition elements! Expected at least"
                f" {self.max_lag} elements."
            )

        if X is not None:
            forecast_horizon = X.shape[0]
        else:
            forecast_horizon = forecast_horizon + self.max_lag

        if self.model_type == "NAR":
            self.n_inputs = 0

        y_output = np.zeros(forecast_horizon, dtype=float)
        y_output.fill(np.nan)
        y_output[: self.max_lag] = y_initial[: self.max_lag, 0]

        model_exponents = [
            self._code2exponents(code=model) for model in self.final_model
        ]
        raw_regressor = np.zeros(len(model_exponents[0]), dtype=float)
        for i in range(self.max_lag, forecast_horizon):
            init = 0
            final = self.max_lag
            k = int(i - self.max_lag)
            raw_regressor[:final] = y_output[k:i]
            for j in range(self.n_inputs):
                init += self.max_lag
                final += self.max_lag
                raw_regressor[init:final] = X[k:i, j]

            regressor_value = np.zeros(len(model_exponents))
            for j, model_exponent in enumerate(model_exponents):
                regressor_value[j] = np.prod(np.power(raw_regressor, model_exponent))

            regressor_value = np.atleast_1d(regressor_value).astype(np.float32)
            y_output = y_output.astype(np.float32)
            x_valid, _ = map(torch.tensor, (regressor_value, y_output))
            y_output[i] = self.net(x_valid.to(self.device))[0].detach().cpu().numpy()
        return y_output.reshape(-1, 1)

    def _nfir_predict(self, X, y_initial):
        y_output = np.zeros(X.shape[0], dtype=float)
        y_output.fill(np.nan)
        y_output[: self.max_lag] = y_initial[: self.max_lag, 0]
        X = X.reshape(-1, self.n_inputs)
        model_exponents = [
            self._code2exponents(code=model) for model in self.final_model
        ]
        raw_regressor = np.zeros(len(model_exponents[0]), dtype=float)
        for i in range(self.max_lag, X.shape[0]):
            init = 0
            final = self.max_lag
            k = int(i - self.max_lag)
            for j in range(self.n_inputs):
                raw_regressor[init:final] = X[k:i, j]
                init += self.max_lag
                final += self.max_lag

            regressor_value = np.zeros(len(model_exponents))
            for j, model_exponent in enumerate(model_exponents):
                regressor_value[j] = np.prod(np.power(raw_regressor, model_exponent))

            regressor_value = np.atleast_1d(regressor_value).astype(np.float32)
            y_output = y_output.astype(np.float32)
            x_valid, _ = map(torch.tensor, (regressor_value, y_output))
            y_output[i] = self.net(x_valid.to(self.device))[0].detach().cpu().numpy()
        return y_output.reshape(-1, 1)

    def _basis_function_predict(self, X, y_initial, forecast_horizon=None):
        if X is not None:
            forecast_horizon = X.shape[0]
        else:
            forecast_horizon = forecast_horizon + self.max_lag

        if self.model_type == "NAR":
            self.n_inputs = 0

        yhat = np.zeros(forecast_horizon, dtype=float)
        yhat.fill(np.nan)
        yhat[: self.max_lag] = y_initial[: self.max_lag, 0]

        analyzed_elements_number = self.max_lag + 1

        for i in range(forecast_horizon - self.max_lag):
            if self.model_type == "NARMAX":
                lagged_data = self.build_input_output_matrix(
                    X[i : i + analyzed_elements_number],
                    yhat[i : i + analyzed_elements_number].reshape(-1, 1),
                )
            elif self.model_type == "NAR":
                lagged_data = self.build_output_matrix(
                    yhat[i : i + analyzed_elements_number].reshape(-1, 1)
                )
            elif self.model_type == "NFIR":
                lagged_data = self.build_input_matrix(
                    X[i : i + analyzed_elements_number]
                )
            else:
                raise ValueError(
                    "Unrecognized model type. The model_type should be NARMAX, NAR or"
                    " NFIR."
                )

            X_tmp = self.basis_function.transform(
                lagged_data, self.max_lag, self.ylag, self.xlag, self.model_type
            )
            X_tmp = np.atleast_1d(X_tmp).astype(np.float32)
            yhat = yhat.astype(np.float32)
            x_valid, _ = map(torch.tensor, (X_tmp, yhat))
            yhat[i + self.max_lag] = (
                self.net(x_valid.to(self.device))[0].detach().cpu().numpy()
            )[0]
        return yhat.reshape(-1, 1)

    def _basis_function_n_step_prediction(self, X, y, steps_ahead, forecast_horizon):
        """Perform the n-steps-ahead prediction of a model.

        Parameters
        ----------
        y : array-like of shape = max_lag
            Initial conditions values of the model
            to start recursive process.
        X : ndarray of floats of shape = n_samples
            Vector with input values to be used in model simulation.

        Returns
        -------
        yhat : ndarray of floats
               The n-steps-ahead predicted values of the model.

        """
        if len(y) < self.max_lag:
            raise ValueError(
                "Insufficient initial condition elements! Expected at least"
                f" {self.max_lag} elements."
            )

        if X is not None:
            forecast_horizon = X.shape[0]
        else:
            forecast_horizon = forecast_horizon + self.max_lag

        yhat = np.zeros(forecast_horizon, dtype=float)
        yhat.fill(np.nan)
        yhat[: self.max_lag] = y[: self.max_lag, 0]

        i = self.max_lag

        while i < len(y):
            k = int(i - self.max_lag)
            if i + steps_ahead > len(y):
                steps_ahead = len(y) - i  # predicts the remaining values

            if self.model_type == "NARMAX":
                yhat[i : i + steps_ahead] = self._basis_function_predict(
                    X[k : i + steps_ahead], y[k : i + steps_ahead]
                )[-steps_ahead:].ravel()
            elif self.model_type == "NAR":
                yhat[i : i + steps_ahead] = self._basis_function_predict(
                    X=None,
                    y_initial=y[k : i + steps_ahead],
                    forecast_horizon=forecast_horizon,
                )[-forecast_horizon : -forecast_horizon + steps_ahead].ravel()
            elif self.model_type == "NFIR":
                yhat[i : i + steps_ahead] = self._basis_function_predict(
                    X=X[k : i + steps_ahead],
                    y_initial=y[k : i + steps_ahead],
                )[-steps_ahead:].ravel()
            else:
                raise ValueError(
                    f"model_type must be NARMAX, NAR or NFIR. Got {self.model_type}"
                )

            i += steps_ahead

        return yhat.reshape(-1, 1)

    def _basis_function_n_steps_horizon(self, X, y, steps_ahead, forecast_horizon):
        yhat = np.zeros(forecast_horizon, dtype=float)
        yhat.fill(np.nan)
        yhat[: self.max_lag] = y[: self.max_lag, 0]

        i = self.max_lag

        while i < len(y):
            k = int(i - self.max_lag)
            if i + steps_ahead > len(y):
                steps_ahead = len(y) - i  # predicts the remaining values

            if self.model_type == "NARMAX":
                yhat[i : i + steps_ahead] = self._basis_function_predict(
                    X[k : i + steps_ahead], y[k : i + steps_ahead]
                )[-forecast_horizon : -forecast_horizon + steps_ahead].ravel()
            elif self.model_type == "NAR":
                yhat[i : i + steps_ahead] = self._basis_function_predict(
                    X=None,
                    y_initial=y[k : i + steps_ahead],
                    forecast_horizon=forecast_horizon,
                )[-forecast_horizon : -forecast_horizon + steps_ahead].ravel()
            elif self.model_type == "NFIR":
                yhat[i : i + steps_ahead] = self._basis_function_predict(
                    X=X[k : i + steps_ahead],
                    y_initial=y[k : i + steps_ahead],
                )[-forecast_horizon : -forecast_horizon + steps_ahead].ravel()
            else:
                raise ValueError(
                    f"model_type must be NARMAX, NAR or NFIR. Got {self.model_type}"
                )

            i += steps_ahead

        yhat = yhat.ravel()
        return yhat.reshape(-1, 1)

convert_to_tensor(reg_matrix, y)

Return the lagged matrix and the y values given the maximum lags.

Based on Pytorch official docs: https://pytorch.org/tutorials/beginner/nn_tutorial.html

Parameters

reg_matrix : ndarray of floats The information matrix of the model. y : ndarray of floats The output data

Returns

Tensor: tensor tensors that have the same size of the first dimension.

Source code in sysidentpy/neural_network/narx_nn.py
def convert_to_tensor(self, reg_matrix, y):
    """Return the lagged matrix and the y values given the maximum lags.

    Based on Pytorch official docs:
    https://pytorch.org/tutorials/beginner/nn_tutorial.html

    Parameters
    ----------
    reg_matrix : ndarray of floats
        The information matrix of the model.
    y : ndarray of floats
        The output data

    Returns
    -------
    Tensor: tensor
        tensors that have the same size of the first dimension.

    """
    reg_matrix, y = map(torch.tensor, (reg_matrix, y))
    return TensorDataset(reg_matrix, y)

data_transform(X, y)

Return the data transformed in tensors using Dataloader.

Parameters

X : ndarray of floats The input data. y : ndarray of floats The output data.

Returns

Tensors : Dataloader

Source code in sysidentpy/neural_network/narx_nn.py
def data_transform(self, X, y):
    """Return the data transformed in tensors using Dataloader.

    Parameters
    ----------
    X : ndarray of floats
        The input data.
    y : ndarray of floats
        The output data.

    Returns
    -------
    Tensors : Dataloader

    """
    if y is None:
        raise ValueError("y cannot be None")

    x_train, y_train = self.split_data(X, y)
    train_ds = self.convert_to_tensor(x_train, y_train)
    train_dl = self.get_data(train_ds)
    return train_dl

define_opt()

Define the optimizer using the user parameters.

Source code in sysidentpy/neural_network/narx_nn.py
def define_opt(self):
    """Define the optimizer using the user parameters."""
    opt = getattr(optim, self.optimizer)
    return opt(self.net.parameters(), lr=self.learning_rate, **self.optim_params)

fit(*, X=None, y=None, X_test=None, y_test=None)

Train a NARX Neural Network model.

This is an training pipeline that allows a friendly usage by the user. The training pipeline was based on https://pytorch.org/tutorials/beginner/nn_tutorial.html

Parameters

X : ndarray of floats The input data to be used in the training process. y : ndarray of floats The output data to be used in the training process. X_test : ndarray of floats The input data to be used in the prediction process. y_test : ndarray of floats The output data (initial conditions) to be used in the prediction process.

Returns

net : nn.Module The model fitted. train_loss: ndarrays of floats The training loss of each batch val_loss: ndarrays of floats The validation loss of each batch

Source code in sysidentpy/neural_network/narx_nn.py
def fit(self, *, X=None, y=None, X_test=None, y_test=None):
    """Train a NARX Neural Network model.

    This is an training pipeline that allows a friendly usage
    by the user. The training pipeline was based on
    https://pytorch.org/tutorials/beginner/nn_tutorial.html

    Parameters
    ----------
    X : ndarray of floats
        The input data to be used in the training process.
    y : ndarray of floats
        The output data to be used in the training process.
    X_test : ndarray of floats
        The input data to be used in the prediction process.
    y_test : ndarray of floats
        The output data (initial conditions) to be used in the prediction process.

    Returns
    -------
    net : nn.Module
        The model fitted.
    train_loss: ndarrays of floats
        The training loss of each batch
    val_loss: ndarrays of floats
        The validation loss of each batch

    """
    train_dl = self.data_transform(X, y)
    if self.verbose:
        if X_test is None or y_test is None:
            raise ValueError(
                "X_test and y_test cannot be None if you set verbose=True"
            )
        valid_dl = self.data_transform(X_test, y_test)

    opt = self.define_opt()
    self.val_loss = []
    self.train_loss = []
    for epoch in range(self.epochs):
        self.net.train()
        for input_data, output_data in train_dl:
            X, y = input_data.to(self.device), output_data.to(self.device)
            self.loss_batch(X, y, opt=opt)

        if self.verbose:
            train_losses, train_nums = zip(
                *[
                    self.loss_batch(X.to(self.device), y.to(self.device))
                    for X, y in train_dl
                ]
            )
            self.train_loss.append(
                np.sum(np.multiply(train_losses, train_nums)) / np.sum(train_nums)
            )

            self.net.eval()
            with torch.no_grad():
                losses, nums = zip(
                    *[
                        self.loss_batch(X.to(self.device), y.to(self.device))
                        for X, y in valid_dl
                    ]
                )
            self.val_loss.append(np.sum(np.multiply(losses, nums)) / np.sum(nums))
            logging.info(
                "Train metrics: %s | Validation metrics: %s",
                self.train_loss[epoch],
                self.val_loss[epoch],
            )
    return self

get_data(train_ds)

Return the lagged matrix and the y values given the maximum lags.

Based on Pytorch official docs: https://pytorch.org/tutorials/beginner/nn_tutorial.html

Parameters

train_ds: tensor Tensors that have the same size of the first dimension.

Returns

Dataloader: dataloader tensors that have the same size of the first dimension.

Source code in sysidentpy/neural_network/narx_nn.py
def get_data(self, train_ds):
    """Return the lagged matrix and the y values given the maximum lags.

    Based on Pytorch official docs:
    https://pytorch.org/tutorials/beginner/nn_tutorial.html

    Parameters
    ----------
    train_ds: tensor
        Tensors that have the same size of the first dimension.

    Returns
    -------
    Dataloader: dataloader
        tensors that have the same size of the first dimension.

    """
    pin_memory = False if self.device.type == "cpu" else True
    return DataLoader(
        train_ds, batch_size=self.batch_size, pin_memory=pin_memory, shuffle=False
    )

loss_batch(X, y, opt=None)

Compute the loss for one batch.

Parameters

X : ndarray of floats The regressor matrix. y : ndarray of floats The output data. opt: Torch optimizer Torch optimizer chosen by the user.

Returns

loss : float The loss of one batch.

Source code in sysidentpy/neural_network/narx_nn.py
def loss_batch(self, X, y, opt=None):
    """Compute the loss for one batch.

    Parameters
    ----------
    X : ndarray of floats
        The regressor matrix.
    y : ndarray of floats
        The output data.
    opt: Torch optimizer
        Torch optimizer chosen by the user.

    Returns
    -------
    loss : float
        The loss of one batch.

    """
    loss = self.loss_func(self.net(X), y)

    if opt is not None:
        opt.zero_grad()
        loss.backward()
        opt.step()

    return loss.item(), len(X)

predict(*, X=None, y=None, steps_ahead=None, forecast_horizon=None)

Return the predicted given an input and initial values.

The predict function allows a friendly usage by the user. Given a trained model, predict values given a new set of data.

This method accept y values mainly for prediction n-steps ahead (to be implemented in the future).

Currently we only support infinity-steps-ahead prediction, but run 1-step-ahead prediction manually is straightforward.

Parameters

X : ndarray of floats The input data to be used in the prediction process. y : ndarray of floats The output data to be used in the prediction process. steps_ahead : int (default = None) The user can use free run simulation, one-step ahead prediction and n-step ahead prediction. forecast_horizon : int, default=None The number of predictions over the time.

Returns

yhat : ndarray of floats The predicted values of the model.

Source code in sysidentpy/neural_network/narx_nn.py
def predict(self, *, X=None, y=None, steps_ahead=None, forecast_horizon=None):
    """Return the predicted given an input and initial values.

    The predict function allows a friendly usage by the user.
    Given a trained model, predict values given
    a new set of data.

    This method accept y values mainly for prediction n-steps ahead
    (to be implemented in the future).

    Currently we only support infinity-steps-ahead prediction,
    but run 1-step-ahead prediction manually is straightforward.

    Parameters
    ----------
    X : ndarray of floats
        The input data to be used in the prediction process.
    y : ndarray of floats
        The output data to be used in the prediction process.
    steps_ahead : int (default = None)
        The user can use free run simulation, one-step ahead prediction
        and n-step ahead prediction.
    forecast_horizon : int, default=None
        The number of predictions over the time.

    Returns
    -------
    yhat : ndarray of floats
        The predicted values of the model.

    """
    if isinstance(self.basis_function, Polynomial):
        if steps_ahead is None:
            return self._model_prediction(X, y, forecast_horizon=forecast_horizon)
        if steps_ahead == 1:
            return self._one_step_ahead_prediction(X, y)

        _check_positive_int(steps_ahead, "steps_ahead")
        return self._n_step_ahead_prediction(X, y, steps_ahead=steps_ahead)

    if steps_ahead is None:
        return self._basis_function_predict(X, y, forecast_horizon=forecast_horizon)
    if steps_ahead == 1:
        return self._one_step_ahead_prediction(X, y)

    return self._basis_function_n_step_prediction(
        X, y, steps_ahead=steps_ahead, forecast_horizon=forecast_horizon
    )

split_data(X, y)

Return the lagged matrix and the y values given the maximum lags.

Parameters

X : ndarray of floats The input data. y : ndarray of floats The output data.

Returns

y : ndarray of floats The y values considering the lags. reg_matrix : ndarray of floats The information matrix of the model.

Source code in sysidentpy/neural_network/narx_nn.py
def split_data(self, X, y):
    """Return the lagged matrix and the y values given the maximum lags.

    Parameters
    ----------
    X : ndarray of floats
        The input data.
    y : ndarray of floats
        The output data.

    Returns
    -------
    y : ndarray of floats
        The y values considering the lags.
    reg_matrix : ndarray of floats
        The information matrix of the model.

    """
    if y is None:
        raise ValueError("y cannot be None")

    self.max_lag = self._get_max_lag()
    lagged_data = self.build_matrix(X, y)

    if isinstance(self.basis_function, Polynomial):
        reg_matrix = self.basis_function.fit(
            lagged_data,
            self.max_lag,
            self.ylag,
            self.xlag,
            self.model_type,
            predefined_regressors=None,
        )
        reg_matrix = reg_matrix[:, 1:]
    else:
        reg_matrix = self.basis_function.fit(
            lagged_data,
            self.max_lag,
            self.ylag,
            self.xlag,
            self.model_type,
            predefined_regressors=None,
        )

    if X is not None:
        self.n_inputs = _num_features(X)
    else:
        self.n_inputs = 1  # only used to create the regressor space base

    self.regressor_code = self.regressor_space(self.n_inputs)
    repetition = len(reg_matrix)
    if not isinstance(self.basis_function, Polynomial):
        tmp_code = np.sort(
            np.tile(self.regressor_code[1:, :], (repetition, 1)),
            axis=0,
        )
        self.regressor_code = tmp_code[list(range(len(reg_matrix))), :].copy()
    else:
        self.regressor_code = self.regressor_code[
            1:
        ]  # removes the column of the constant

    self.final_model = self.regressor_code.copy()
    reg_matrix = np.atleast_1d(reg_matrix).astype(np.float32)

    y = np.atleast_1d(y[self.max_lag :]).astype(np.float32)
    return reg_matrix, y