Skip to content

Documentation for Multiobjective Parameter Estimation

Affine Information Least Squares for NARMAX models.

AILS

Affine Information Least Squares (AILS) for NARMAX Parameter Estimation.

AILS is a non-iterative multiobjective Least Squares technique used for finding Pareto-set solutions in NARMAX (Nonlinear AutoRegressive Moving Average with eXogenous inputs) model parameter estimation. This method is suitable for linear-in-the-parameter model structures.

Two types of auxiliary information can be incorporated: static function and steady-state gain.

Parameters

static_gain : bool, default=True Flag indicating the presence of data related to steady-state gain. static_function : bool, default=True Flag indicating the presence of data concerning static function. final_model : ndarray, default=[[0], [0]] Model code representation.

References

  1. Nepomuceno, E. G., Takahashi, R. H. C., & Aguirre, L. A. (2007). "Multiobjective parameter estimation for nonlinear systems: Affine information and least-squares formulation." International Journal of Control, 80, 863-871.
Source code in sysidentpy/multiobjective_parameter_estimation/estimators.py
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
class AILS:
    """Affine Information Least Squares (AILS) for NARMAX Parameter Estimation.

    AILS is a non-iterative multiobjective Least Squares technique used for finding
    Pareto-set solutions in NARMAX (Nonlinear AutoRegressive Moving Average with
    eXogenous inputs) model parameter estimation. This method is suitable for
    linear-in-the-parameter model structures.

    Two types of auxiliary information can be incorporated: static function and
    steady-state gain.

    Parameters
    ----------
    static_gain : bool, default=True
        Flag indicating the presence of data related to steady-state gain.
    static_function : bool, default=True
        Flag indicating the presence of data concerning static function.
    final_model : ndarray, default=[[0], [0]]
        Model code representation.

    References
    ----------
    1. Nepomuceno, E. G., Takahashi, R. H. C., & Aguirre, L. A. (2007).
    "Multiobjective parameter estimation for nonlinear systems: Affine information and
    least-squares formulation."
    International Journal of Control, 80, 863-871.
    """

    def __init__(
        self,
        static_gain: bool = True,
        static_function: bool = True,
        final_model: np.ndarray = np.zeros((1, 1)),
        normalize: bool = True,
    ):
        self.n_inputs = np.max(final_model // 1000) - 1
        self.degree = np.shape(final_model)[1]
        self.max_lag = 1
        self.final_model = final_model
        self.static_gain = static_gain
        self.static_function = static_function
        self.normalize = normalize

    def get_term_clustering(self, qit: np.ndarray) -> np.ndarray:
        """Get the term clustering of the model.

        This function takes a matrix `qit` and compute the term clustering based
        on their values. It calculates the number of occurrences of each value
        for each row in the matrix.

        Parameters
        ----------
        qit : ndarray
            Input matrix containing terms clustering to be sorted.

        Returns
        -------
        N_aux : ndarray
            A new matrix with rows representing the number of occurrences of each value
            for each row in the input matrix `qit`. The columns correspond to different
            values.

        Examples
        --------
        >>> qit = np.array([[1, 2, 2],
        ...                 [1, 3, 1],
        ...                 [2, 2, 3]])
        >>> result = get_term_clustering(qit)
        >>> print(result)
        [[1. 2. 0. 0.]
        [2. 0. 1. 0.]
        [0. 2. 1. 0.]]

        Notes
        -----
        The function calculates the number of occurrences of each value (from 1 to
        the maximum value in the input matrix `qit`) for each row and returns a matrix
        where rows represent rows of the input matrix `qit`, and columns represent
        different values.

        """
        max_value = int(np.max(qit))
        counts_matrix = np.zeros((qit.shape[0], max_value))

        for k in range(1, max_value + 1):
            counts_matrix[:, k - 1] = np.sum(qit == k, axis=1)

        return counts_matrix.astype(int)

    def build_linear_mapping(self):
        """Assemble the linear mapping matrix R using the regressor-space method.

        This function constructs the linear mapping matrix R, which plays a key role in
        mapping the parameter vector to the cluster coefficients. It also generates a
        row matrix qit that assists in locating terms within the linear mapping matrix.
        This qit matrix is later used in creating the static regressor matrix (Q).

        Returns
        -------
        R : ndarray of int
            A constant matrix of ones and zeros that maps the parameter vector to
            cluster coefficients.
        qit : ndarray of int
            A row matrix that helps locate terms within the linear mapping matrix R and
            is used in the creation of the static regressor matrix (Q).

        Notes
        -----
        The linear mapping matrix R is constructed using the regressor-space method.
        It plays a crucial role in the parameter estimation process, facilitating the
        mapping of parameter values to cluster coefficients. The qit matrix aids in
        term localization within the linear mapping matrix R and is subsequently used
        to build the static regressor matrix (Q).

        """
        xlag = [1] * self.n_inputs

        object_qit = RegressorDictionary(xlag=xlag, ylag=[1])
        # Given xlag and ylag equal to 1, there is no repetition of terms, which is
        # ideal for building qit.
        qit = object_qit.regressor_space(n_inputs=self.n_inputs) // 1000
        model = self.final_model // 1000
        R = np.all(qit[:, None, :] == model, axis=2).astype(int)
        # Find rows with all zeros in R (sum of row elements is 0)
        null_rows = list(np.where(np.sum(R, axis=1) == 0)[0])

        R = np.delete(R, null_rows, axis=0)
        qit = np.delete(qit, null_rows, axis=0)
        return R, self.get_term_clustering(qit)

    def build_static_function_information(
        self, X_static: np.ndarray, y_static: np.ndarray
    ) -> Tuple[np.ndarray, np.ndarray, np.ndarray]:
        """Construct a matrix of static regressors for a NARMAX model.

        Parameters
        ----------
        y_static : array-like, shape (n_samples_static_function,)
            Output of the static function.
        X_static : array-like, shape (n_samples_static_function,)
            Static function input.

        Returns
        -------
        Q_dot_R : ndarray of floats, shape (n_samples_static_function, n_parameters)
            The result of multiplying the matrix of static regressors (Q) with the
            linear mapping matrix (R), where n_parameters is the number of model
            parameters.
        static_covariance: ndarray of floats, shape (n_parameters, n_parameters)
            The covariance QR'QR
        static_response: ndarray of floats, shape (n_parameters,)
            The response QR'y

        Notes
        -----
        This function constructs a matrix of static regressors (Q) based on the provided
        static function outputs (y_static) and inputs (X_static). The linear mapping
        matrix (R) should be precomputed before calling this function. The result
        Q_dot_R represents the static regressors for the NARMAX model.

        """
        R, qit = self.build_linear_mapping()
        Q = y_static ** qit[:, 0]
        for k in range(self.n_inputs):
            Q *= X_static ** qit[:, 1 + k]

        Q = Q.reshape(len(y_static), len(qit))

        QR = Q.dot(R)
        static_covariance = (QR.T).dot(QR)
        static_response = (QR.T).dot(y_static)
        return QR, static_covariance, static_response

    def build_static_gain_information(
        self, X_static: np.ndarray, y_static: np.ndarray, gain: np.ndarray
    ) -> Tuple[np.ndarray, np.ndarray, np.ndarray]:
        """Construct a matrix of static regressors referring to the derivative (gain).

        Parameters
        ----------
        y_static : array-like, shape (n_samples_static_function,)
            Output of the static function.
        X_static : array-like, shape (n_samples_static_function,)
            Static function input.
        gain : array-like, shape (n_samples_static_gain,)
            Static gain input.

        Returns
        -------
        HR : ndarray of floats, shape (n_samples_static_function, n_parameters)
            The matrix of static regressors for the derivative (gain) multiplied by the
            linear mapping matrix R.
        gain_covariance : ndarray of floats, shape (n_parameters, n_parameters)
            The covariance matrix (HR'HR) for the gain-related regressors.
        gain_response : ndarray of floats, shape (n_parameters,)
            The response vector (HR'y) for the gain-related regressors.

        Notes
        -----
        This function constructs a matrix of static regressors (G+H) for the derivative
        (gain) based on the provided static function outputs (y_static), inputs
        (X_static), and gain values. The linear mapping matrix (R) should be
        precomputed before calling this function.

        """
        R, qit = self.build_linear_mapping()
        H = np.zeros((len(y_static), len(qit)))
        G = np.zeros((len(y_static), len(qit)))
        for i in range(len(y_static)):
            for j in range(1, len(qit)):
                if y_static[i, 0] == 0:
                    if (qit[j, 0]) == 1:
                        H[i, j] = gain[i][0]
                    else:
                        H[i, j] = 0
                else:
                    H[i, j] = (gain[i] * qit[j, 0] * y_static[i, 0] ** (qit[j, 0] - 1))[
                        0
                    ]
                for k in range(self.n_inputs):
                    if X_static[i, k] == 0:
                        if (qit[j, 1 + k]) == 1:
                            G[i, j] = 1
                        else:
                            G[i, j] = 0
                    else:
                        G[i, j] = qit[j, 1 + k] * X_static[i, k] ** (qit[j, 1 + k] - 1)

        HR = (G + H).dot(R)
        gain_covariance = (HR.T).dot(HR)
        gain_response = (HR.T).dot(gain)
        return HR, gain_covariance, gain_response

    def get_cost_function(
        self, y: np.ndarray, psi: np.ndarray, theta: np.ndarray
    ) -> np.ndarray:
        """Calculate the cost function based on residuals.

        Parameters
        ----------
        y : ndarray of floats
            The target data used in the identification process.
        psi : ndarray of floats, shape (n_samples, n_parameters)
            The matrix of regressors.
        theta : ndarray of floats
            The parameter vector.

        Returns
        -------
        cost_function : float
            The calculated cost function value.

        Notes
        -----
        This method computes the cost function value based on the residuals between
        the target data (y) and the predicted values using the regressors (dynamic
        and static) and parameter vector (theta). It quantifies the error in the
        model's predictions.

        """
        residuals = y - psi.dot(theta)
        return residuals.T.dot(residuals)

    def build_system_data(
        self,
        y: np.ndarray,
        static_gain: np.ndarray,
        static_function: np.ndarray,
    ) -> List[np.ndarray]:
        """Construct a list of output data components for the NARMAX system.

        Parameters
        ----------
        y : ndarray of floats
            The target data used in the identification process.
        static_gain : ndarray of floats
            Static gain output data.
        static_function : ndarray of floats
            Static function output data.

        Returns
        -------
        system_data : list of ndarrays
            A list containing data components, including the target data (y),
            static gain data (if present), and static function data (if present).

        Notes
        -----
        This method constructs a list of data components that are used in the NARMAX
        system identification process. The components may include the target data (y),
        static gain data (if enabled), and static function data (if enabled).

        """
        if not self.static_gain:
            return [y] + [static_function]

        if not self.static_function:
            return [y] + [static_gain]

        return [y] + [static_gain] + [static_function]

    def build_affine_data(
        self, psi: np.ndarray, HR: np.ndarray, QR: np.ndarray
    ) -> List[np.ndarray]:
        """Construct a list of affine data components for NARMAX modeling.

        Parameters
        ----------
        psi : ndarray of floats, shape (n_samples, n_parameters)
            The matrix of dynamic regressors.
        HR : ndarray of floats, shape (n_samples_static_gain, n_parameters)
            The matrix of static gain regressors.
        QR : ndarray of floats, shape (n_samples_static_function, n_parameters)
            The matrix of static function regressors.

        Returns
        -------
        affine_data : list of ndarrays
            A list containing affine data components, including the matrix of static
            regressors (psi), static gain regressors (if present), and static function
            regressors (if present).

        Notes
        -----
        This method constructs a list of affine data components used in the NARMAX
        modeling process. The components may include the matrix of static regressors
        (psi), static gain regressors (if enabled), and static function regressors
        (if enabled).

        """
        if not self.static_gain:
            return [psi] + [QR]

        if not self.static_function:
            return [psi] + [HR]

        return [psi] + [HR] + [QR]

    def build_psi(self, X: np.ndarray, y: np.ndarray) -> np.ndarray:
        """Build the matrix of dynamic regressor for NARMAX modeling.

        Parameters
        ----------
        X : ndarray of floats
            The input data to be used in the training process.
        y : ndarray of floats
            The output data to be used in the training process.

        Returns
        -------
        psi : ndarray of floats, shape (n_samples, n_parameters)
            The matrix of dynamic regressors.

        """
        psi_builder = RegressorDictionary()
        xlag_code = psi_builder._list_input_regressor_code(self.final_model)
        ylag_code = psi_builder._list_output_regressor_code(self.final_model)
        xlag = psi_builder._get_lag_from_regressor_code(xlag_code)
        ylag = psi_builder._get_lag_from_regressor_code(ylag_code)
        self.max_lag = psi_builder._get_max_lag_from_model_code(self.final_model)
        if self.n_inputs != 1:
            xlag = self.n_inputs * [list(range(1, self.max_lag + 1))]

        psi_builder.xlag = xlag
        psi_builder.ylag = ylag
        regressor_code = psi_builder.regressor_space(self.n_inputs)
        pivv = psi_builder._get_index_from_regressor_code(
            regressor_code, self.final_model
        )
        self.final_model = regressor_code[pivv]

        lagged_data = InformationMatrix(xlag=xlag, ylag=ylag).build_input_output_matrix(
            X=X, y=y
        )

        psi = Polynomial(degree=self.degree).fit(
            lagged_data, max_lag=self.max_lag, ylag=ylag, xlag=xlag, predefined_regressors=pivv
        )
        return psi

    def estimate(
        self,
        y_static: np.ndarray = np.zeros(1),
        X_static: np.ndarray = np.zeros(1),
        gain: np.ndarray = np.zeros(1),
        y: np.ndarray = np.zeros(1),
        X: np.ndarray = np.zeros((1, 1)),
        weighing_matrix: np.ndarray = np.zeros((1, 1)),
    ) -> Tuple[np.ndarray, np.ndarray, np.ndarray, np.ndarray, np.ndarray, np.int64]:
        """Estimate the parameters via multi-objective techniques.

        Parameters
        ----------
        y_static : array-like of shape = n_samples_static_function, default = ([0])
            Output of static function.
        X_static : array-like of shape = n_samples_static_function, default = ([0])
            Static function input.
        gain : array-like of shape = n_samples_static_gain, default = ([0])
            Static gain input.
        y : array-like of shape = n_samples, default = ([0])
            The target data used in the identification process.
        X : ndarray of floats, default = ([[0],[0]])
            Matrix of static regressors.
        weighing_matrix: ndarray
            Weighing matrix for defining the weight of each objective.

        Returns
        -------
        J : ndarray
            Matrix referring to the objectives.
        euclidean_norm : ndarray
            Matrix of the Euclidean norm.
        theta : ndarray
            Matrix with parameters for each weight.
        HR : ndarray
            H matrix multiplied by R.
        QR : ndarray
            Q matrix multiplied by R.
        position : ndarray, default = ([[0],[0]])
            Position of the best theta set.

        """
        psi = self.build_psi(X, y)
        y = y[self.max_lag :]
        HR, QR = np.zeros((1, 1)), np.zeros((1, 1))
        n_parameters = weighing_matrix.shape[1]
        num_objectives = self.static_function + self.static_gain + 1
        euclidean_norm = np.zeros(n_parameters)
        theta = np.zeros((n_parameters, self.final_model.shape[0]))
        dynamic_covariance = psi.T.dot(psi)
        dynamic_response = psi.T.dot(y)

        if self.static_function:
            QR, static_covariance, static_response = (
                self.build_static_function_information(X_static, y_static)
            )
        if self.static_gain:
            HR, gain_covariance, gain_response = self.build_static_gain_information(
                X_static, y_static, gain
            )
        J = np.zeros((num_objectives, n_parameters))
        system_data = self.build_system_data(y, gain, y_static)
        affine_information_data = self.build_affine_data(psi, HR, QR)
        for i in range(n_parameters):
            theta1 = weighing_matrix[0, i] * dynamic_covariance
            theta2 = weighing_matrix[0, i] * dynamic_response

            w = 1
            if self.static_function:
                theta1 += weighing_matrix[w, i] * static_covariance
                theta2 += weighing_matrix[w, i] * static_response.reshape(-1, 1)
                w += 1

            if self.static_gain:
                theta1 += weighing_matrix[w, i] * gain_covariance
                theta2 += weighing_matrix[w, i] * gain_response.reshape(-1, 1)
                w += 1

            tmp_theta = np.linalg.lstsq(theta1, theta2, rcond=None)[0]
            theta[i, :] = tmp_theta.T

            for j in range(num_objectives):
                residuals = self.get_cost_function(
                    system_data[j], affine_information_data[j], tmp_theta
                )
                J[j, i] = residuals[0]

            euclidean_norm[i] = np.linalg.norm(J[:, i])

        if self.normalize is True:
            J /= np.max(J, axis=1)[:, np.newaxis]
            euclidean_norm /= np.max(euclidean_norm)

            euclidean_norm = euclidean_norm / np.max(euclidean_norm)

        position = np.argmin(euclidean_norm)
        return (
            J,
            euclidean_norm,
            theta,
            HR,
            QR,
            position,
        )

build_affine_data(psi, HR, QR)

Construct a list of affine data components for NARMAX modeling.

Parameters

psi : ndarray of floats, shape (n_samples, n_parameters) The matrix of dynamic regressors. HR : ndarray of floats, shape (n_samples_static_gain, n_parameters) The matrix of static gain regressors. QR : ndarray of floats, shape (n_samples_static_function, n_parameters) The matrix of static function regressors.

Returns

affine_data : list of ndarrays A list containing affine data components, including the matrix of static regressors (psi), static gain regressors (if present), and static function regressors (if present).

Notes

This method constructs a list of affine data components used in the NARMAX modeling process. The components may include the matrix of static regressors (psi), static gain regressors (if enabled), and static function regressors (if enabled).

Source code in sysidentpy/multiobjective_parameter_estimation/estimators.py
def build_affine_data(
    self, psi: np.ndarray, HR: np.ndarray, QR: np.ndarray
) -> List[np.ndarray]:
    """Construct a list of affine data components for NARMAX modeling.

    Parameters
    ----------
    psi : ndarray of floats, shape (n_samples, n_parameters)
        The matrix of dynamic regressors.
    HR : ndarray of floats, shape (n_samples_static_gain, n_parameters)
        The matrix of static gain regressors.
    QR : ndarray of floats, shape (n_samples_static_function, n_parameters)
        The matrix of static function regressors.

    Returns
    -------
    affine_data : list of ndarrays
        A list containing affine data components, including the matrix of static
        regressors (psi), static gain regressors (if present), and static function
        regressors (if present).

    Notes
    -----
    This method constructs a list of affine data components used in the NARMAX
    modeling process. The components may include the matrix of static regressors
    (psi), static gain regressors (if enabled), and static function regressors
    (if enabled).

    """
    if not self.static_gain:
        return [psi] + [QR]

    if not self.static_function:
        return [psi] + [HR]

    return [psi] + [HR] + [QR]

build_linear_mapping()

Assemble the linear mapping matrix R using the regressor-space method.

This function constructs the linear mapping matrix R, which plays a key role in mapping the parameter vector to the cluster coefficients. It also generates a row matrix qit that assists in locating terms within the linear mapping matrix. This qit matrix is later used in creating the static regressor matrix (Q).

Returns

R : ndarray of int A constant matrix of ones and zeros that maps the parameter vector to cluster coefficients. qit : ndarray of int A row matrix that helps locate terms within the linear mapping matrix R and is used in the creation of the static regressor matrix (Q).

Notes

The linear mapping matrix R is constructed using the regressor-space method. It plays a crucial role in the parameter estimation process, facilitating the mapping of parameter values to cluster coefficients. The qit matrix aids in term localization within the linear mapping matrix R and is subsequently used to build the static regressor matrix (Q).

Source code in sysidentpy/multiobjective_parameter_estimation/estimators.py
def build_linear_mapping(self):
    """Assemble the linear mapping matrix R using the regressor-space method.

    This function constructs the linear mapping matrix R, which plays a key role in
    mapping the parameter vector to the cluster coefficients. It also generates a
    row matrix qit that assists in locating terms within the linear mapping matrix.
    This qit matrix is later used in creating the static regressor matrix (Q).

    Returns
    -------
    R : ndarray of int
        A constant matrix of ones and zeros that maps the parameter vector to
        cluster coefficients.
    qit : ndarray of int
        A row matrix that helps locate terms within the linear mapping matrix R and
        is used in the creation of the static regressor matrix (Q).

    Notes
    -----
    The linear mapping matrix R is constructed using the regressor-space method.
    It plays a crucial role in the parameter estimation process, facilitating the
    mapping of parameter values to cluster coefficients. The qit matrix aids in
    term localization within the linear mapping matrix R and is subsequently used
    to build the static regressor matrix (Q).

    """
    xlag = [1] * self.n_inputs

    object_qit = RegressorDictionary(xlag=xlag, ylag=[1])
    # Given xlag and ylag equal to 1, there is no repetition of terms, which is
    # ideal for building qit.
    qit = object_qit.regressor_space(n_inputs=self.n_inputs) // 1000
    model = self.final_model // 1000
    R = np.all(qit[:, None, :] == model, axis=2).astype(int)
    # Find rows with all zeros in R (sum of row elements is 0)
    null_rows = list(np.where(np.sum(R, axis=1) == 0)[0])

    R = np.delete(R, null_rows, axis=0)
    qit = np.delete(qit, null_rows, axis=0)
    return R, self.get_term_clustering(qit)

build_psi(X, y)

Build the matrix of dynamic regressor for NARMAX modeling.

Parameters

X : ndarray of floats The input data to be used in the training process. y : ndarray of floats The output data to be used in the training process.

Returns

psi : ndarray of floats, shape (n_samples, n_parameters) The matrix of dynamic regressors.

Source code in sysidentpy/multiobjective_parameter_estimation/estimators.py
def build_psi(self, X: np.ndarray, y: np.ndarray) -> np.ndarray:
    """Build the matrix of dynamic regressor for NARMAX modeling.

    Parameters
    ----------
    X : ndarray of floats
        The input data to be used in the training process.
    y : ndarray of floats
        The output data to be used in the training process.

    Returns
    -------
    psi : ndarray of floats, shape (n_samples, n_parameters)
        The matrix of dynamic regressors.

    """
    psi_builder = RegressorDictionary()
    xlag_code = psi_builder._list_input_regressor_code(self.final_model)
    ylag_code = psi_builder._list_output_regressor_code(self.final_model)
    xlag = psi_builder._get_lag_from_regressor_code(xlag_code)
    ylag = psi_builder._get_lag_from_regressor_code(ylag_code)
    self.max_lag = psi_builder._get_max_lag_from_model_code(self.final_model)
    if self.n_inputs != 1:
        xlag = self.n_inputs * [list(range(1, self.max_lag + 1))]

    psi_builder.xlag = xlag
    psi_builder.ylag = ylag
    regressor_code = psi_builder.regressor_space(self.n_inputs)
    pivv = psi_builder._get_index_from_regressor_code(
        regressor_code, self.final_model
    )
    self.final_model = regressor_code[pivv]

    lagged_data = InformationMatrix(xlag=xlag, ylag=ylag).build_input_output_matrix(
        X=X, y=y
    )

    psi = Polynomial(degree=self.degree).fit(
        lagged_data, max_lag=self.max_lag, ylag=ylag, xlag=xlag, predefined_regressors=pivv
    )
    return psi

build_static_function_information(X_static, y_static)

Construct a matrix of static regressors for a NARMAX model.

Parameters

y_static : array-like, shape (n_samples_static_function,) Output of the static function. X_static : array-like, shape (n_samples_static_function,) Static function input.

Returns

Q_dot_R : ndarray of floats, shape (n_samples_static_function, n_parameters) The result of multiplying the matrix of static regressors (Q) with the linear mapping matrix (R), where n_parameters is the number of model parameters. static_covariance: ndarray of floats, shape (n_parameters, n_parameters) The covariance QR'QR static_response: ndarray of floats, shape (n_parameters,) The response QR'y

Notes

This function constructs a matrix of static regressors (Q) based on the provided static function outputs (y_static) and inputs (X_static). The linear mapping matrix (R) should be precomputed before calling this function. The result Q_dot_R represents the static regressors for the NARMAX model.

Source code in sysidentpy/multiobjective_parameter_estimation/estimators.py
def build_static_function_information(
    self, X_static: np.ndarray, y_static: np.ndarray
) -> Tuple[np.ndarray, np.ndarray, np.ndarray]:
    """Construct a matrix of static regressors for a NARMAX model.

    Parameters
    ----------
    y_static : array-like, shape (n_samples_static_function,)
        Output of the static function.
    X_static : array-like, shape (n_samples_static_function,)
        Static function input.

    Returns
    -------
    Q_dot_R : ndarray of floats, shape (n_samples_static_function, n_parameters)
        The result of multiplying the matrix of static regressors (Q) with the
        linear mapping matrix (R), where n_parameters is the number of model
        parameters.
    static_covariance: ndarray of floats, shape (n_parameters, n_parameters)
        The covariance QR'QR
    static_response: ndarray of floats, shape (n_parameters,)
        The response QR'y

    Notes
    -----
    This function constructs a matrix of static regressors (Q) based on the provided
    static function outputs (y_static) and inputs (X_static). The linear mapping
    matrix (R) should be precomputed before calling this function. The result
    Q_dot_R represents the static regressors for the NARMAX model.

    """
    R, qit = self.build_linear_mapping()
    Q = y_static ** qit[:, 0]
    for k in range(self.n_inputs):
        Q *= X_static ** qit[:, 1 + k]

    Q = Q.reshape(len(y_static), len(qit))

    QR = Q.dot(R)
    static_covariance = (QR.T).dot(QR)
    static_response = (QR.T).dot(y_static)
    return QR, static_covariance, static_response

build_static_gain_information(X_static, y_static, gain)

Construct a matrix of static regressors referring to the derivative (gain).

Parameters

y_static : array-like, shape (n_samples_static_function,) Output of the static function. X_static : array-like, shape (n_samples_static_function,) Static function input. gain : array-like, shape (n_samples_static_gain,) Static gain input.

Returns

HR : ndarray of floats, shape (n_samples_static_function, n_parameters) The matrix of static regressors for the derivative (gain) multiplied by the linear mapping matrix R. gain_covariance : ndarray of floats, shape (n_parameters, n_parameters) The covariance matrix (HR'HR) for the gain-related regressors. gain_response : ndarray of floats, shape (n_parameters,) The response vector (HR'y) for the gain-related regressors.

Notes

This function constructs a matrix of static regressors (G+H) for the derivative (gain) based on the provided static function outputs (y_static), inputs (X_static), and gain values. The linear mapping matrix (R) should be precomputed before calling this function.

Source code in sysidentpy/multiobjective_parameter_estimation/estimators.py
def build_static_gain_information(
    self, X_static: np.ndarray, y_static: np.ndarray, gain: np.ndarray
) -> Tuple[np.ndarray, np.ndarray, np.ndarray]:
    """Construct a matrix of static regressors referring to the derivative (gain).

    Parameters
    ----------
    y_static : array-like, shape (n_samples_static_function,)
        Output of the static function.
    X_static : array-like, shape (n_samples_static_function,)
        Static function input.
    gain : array-like, shape (n_samples_static_gain,)
        Static gain input.

    Returns
    -------
    HR : ndarray of floats, shape (n_samples_static_function, n_parameters)
        The matrix of static regressors for the derivative (gain) multiplied by the
        linear mapping matrix R.
    gain_covariance : ndarray of floats, shape (n_parameters, n_parameters)
        The covariance matrix (HR'HR) for the gain-related regressors.
    gain_response : ndarray of floats, shape (n_parameters,)
        The response vector (HR'y) for the gain-related regressors.

    Notes
    -----
    This function constructs a matrix of static regressors (G+H) for the derivative
    (gain) based on the provided static function outputs (y_static), inputs
    (X_static), and gain values. The linear mapping matrix (R) should be
    precomputed before calling this function.

    """
    R, qit = self.build_linear_mapping()
    H = np.zeros((len(y_static), len(qit)))
    G = np.zeros((len(y_static), len(qit)))
    for i in range(len(y_static)):
        for j in range(1, len(qit)):
            if y_static[i, 0] == 0:
                if (qit[j, 0]) == 1:
                    H[i, j] = gain[i][0]
                else:
                    H[i, j] = 0
            else:
                H[i, j] = (gain[i] * qit[j, 0] * y_static[i, 0] ** (qit[j, 0] - 1))[
                    0
                ]
            for k in range(self.n_inputs):
                if X_static[i, k] == 0:
                    if (qit[j, 1 + k]) == 1:
                        G[i, j] = 1
                    else:
                        G[i, j] = 0
                else:
                    G[i, j] = qit[j, 1 + k] * X_static[i, k] ** (qit[j, 1 + k] - 1)

    HR = (G + H).dot(R)
    gain_covariance = (HR.T).dot(HR)
    gain_response = (HR.T).dot(gain)
    return HR, gain_covariance, gain_response

build_system_data(y, static_gain, static_function)

Construct a list of output data components for the NARMAX system.

Parameters

y : ndarray of floats The target data used in the identification process. static_gain : ndarray of floats Static gain output data. static_function : ndarray of floats Static function output data.

Returns

system_data : list of ndarrays A list containing data components, including the target data (y), static gain data (if present), and static function data (if present).

Notes

This method constructs a list of data components that are used in the NARMAX system identification process. The components may include the target data (y), static gain data (if enabled), and static function data (if enabled).

Source code in sysidentpy/multiobjective_parameter_estimation/estimators.py
def build_system_data(
    self,
    y: np.ndarray,
    static_gain: np.ndarray,
    static_function: np.ndarray,
) -> List[np.ndarray]:
    """Construct a list of output data components for the NARMAX system.

    Parameters
    ----------
    y : ndarray of floats
        The target data used in the identification process.
    static_gain : ndarray of floats
        Static gain output data.
    static_function : ndarray of floats
        Static function output data.

    Returns
    -------
    system_data : list of ndarrays
        A list containing data components, including the target data (y),
        static gain data (if present), and static function data (if present).

    Notes
    -----
    This method constructs a list of data components that are used in the NARMAX
    system identification process. The components may include the target data (y),
    static gain data (if enabled), and static function data (if enabled).

    """
    if not self.static_gain:
        return [y] + [static_function]

    if not self.static_function:
        return [y] + [static_gain]

    return [y] + [static_gain] + [static_function]

estimate(y_static=np.zeros(1), X_static=np.zeros(1), gain=np.zeros(1), y=np.zeros(1), X=np.zeros((1, 1)), weighing_matrix=np.zeros((1, 1)))

Estimate the parameters via multi-objective techniques.

Parameters

y_static : array-like of shape = n_samples_static_function, default = ([0]) Output of static function. X_static : array-like of shape = n_samples_static_function, default = ([0]) Static function input. gain : array-like of shape = n_samples_static_gain, default = ([0]) Static gain input. y : array-like of shape = n_samples, default = ([0]) The target data used in the identification process. X : ndarray of floats, default = ([[0],[0]]) Matrix of static regressors. weighing_matrix: ndarray Weighing matrix for defining the weight of each objective.

Returns

J : ndarray Matrix referring to the objectives. euclidean_norm : ndarray Matrix of the Euclidean norm. theta : ndarray Matrix with parameters for each weight. HR : ndarray H matrix multiplied by R. QR : ndarray Q matrix multiplied by R. position : ndarray, default = ([[0],[0]]) Position of the best theta set.

Source code in sysidentpy/multiobjective_parameter_estimation/estimators.py
def estimate(
    self,
    y_static: np.ndarray = np.zeros(1),
    X_static: np.ndarray = np.zeros(1),
    gain: np.ndarray = np.zeros(1),
    y: np.ndarray = np.zeros(1),
    X: np.ndarray = np.zeros((1, 1)),
    weighing_matrix: np.ndarray = np.zeros((1, 1)),
) -> Tuple[np.ndarray, np.ndarray, np.ndarray, np.ndarray, np.ndarray, np.int64]:
    """Estimate the parameters via multi-objective techniques.

    Parameters
    ----------
    y_static : array-like of shape = n_samples_static_function, default = ([0])
        Output of static function.
    X_static : array-like of shape = n_samples_static_function, default = ([0])
        Static function input.
    gain : array-like of shape = n_samples_static_gain, default = ([0])
        Static gain input.
    y : array-like of shape = n_samples, default = ([0])
        The target data used in the identification process.
    X : ndarray of floats, default = ([[0],[0]])
        Matrix of static regressors.
    weighing_matrix: ndarray
        Weighing matrix for defining the weight of each objective.

    Returns
    -------
    J : ndarray
        Matrix referring to the objectives.
    euclidean_norm : ndarray
        Matrix of the Euclidean norm.
    theta : ndarray
        Matrix with parameters for each weight.
    HR : ndarray
        H matrix multiplied by R.
    QR : ndarray
        Q matrix multiplied by R.
    position : ndarray, default = ([[0],[0]])
        Position of the best theta set.

    """
    psi = self.build_psi(X, y)
    y = y[self.max_lag :]
    HR, QR = np.zeros((1, 1)), np.zeros((1, 1))
    n_parameters = weighing_matrix.shape[1]
    num_objectives = self.static_function + self.static_gain + 1
    euclidean_norm = np.zeros(n_parameters)
    theta = np.zeros((n_parameters, self.final_model.shape[0]))
    dynamic_covariance = psi.T.dot(psi)
    dynamic_response = psi.T.dot(y)

    if self.static_function:
        QR, static_covariance, static_response = (
            self.build_static_function_information(X_static, y_static)
        )
    if self.static_gain:
        HR, gain_covariance, gain_response = self.build_static_gain_information(
            X_static, y_static, gain
        )
    J = np.zeros((num_objectives, n_parameters))
    system_data = self.build_system_data(y, gain, y_static)
    affine_information_data = self.build_affine_data(psi, HR, QR)
    for i in range(n_parameters):
        theta1 = weighing_matrix[0, i] * dynamic_covariance
        theta2 = weighing_matrix[0, i] * dynamic_response

        w = 1
        if self.static_function:
            theta1 += weighing_matrix[w, i] * static_covariance
            theta2 += weighing_matrix[w, i] * static_response.reshape(-1, 1)
            w += 1

        if self.static_gain:
            theta1 += weighing_matrix[w, i] * gain_covariance
            theta2 += weighing_matrix[w, i] * gain_response.reshape(-1, 1)
            w += 1

        tmp_theta = np.linalg.lstsq(theta1, theta2, rcond=None)[0]
        theta[i, :] = tmp_theta.T

        for j in range(num_objectives):
            residuals = self.get_cost_function(
                system_data[j], affine_information_data[j], tmp_theta
            )
            J[j, i] = residuals[0]

        euclidean_norm[i] = np.linalg.norm(J[:, i])

    if self.normalize is True:
        J /= np.max(J, axis=1)[:, np.newaxis]
        euclidean_norm /= np.max(euclidean_norm)

        euclidean_norm = euclidean_norm / np.max(euclidean_norm)

    position = np.argmin(euclidean_norm)
    return (
        J,
        euclidean_norm,
        theta,
        HR,
        QR,
        position,
    )

get_cost_function(y, psi, theta)

Calculate the cost function based on residuals.

Parameters

y : ndarray of floats The target data used in the identification process. psi : ndarray of floats, shape (n_samples, n_parameters) The matrix of regressors. theta : ndarray of floats The parameter vector.

Returns

cost_function : float The calculated cost function value.

Notes

This method computes the cost function value based on the residuals between the target data (y) and the predicted values using the regressors (dynamic and static) and parameter vector (theta). It quantifies the error in the model's predictions.

Source code in sysidentpy/multiobjective_parameter_estimation/estimators.py
def get_cost_function(
    self, y: np.ndarray, psi: np.ndarray, theta: np.ndarray
) -> np.ndarray:
    """Calculate the cost function based on residuals.

    Parameters
    ----------
    y : ndarray of floats
        The target data used in the identification process.
    psi : ndarray of floats, shape (n_samples, n_parameters)
        The matrix of regressors.
    theta : ndarray of floats
        The parameter vector.

    Returns
    -------
    cost_function : float
        The calculated cost function value.

    Notes
    -----
    This method computes the cost function value based on the residuals between
    the target data (y) and the predicted values using the regressors (dynamic
    and static) and parameter vector (theta). It quantifies the error in the
    model's predictions.

    """
    residuals = y - psi.dot(theta)
    return residuals.T.dot(residuals)

get_term_clustering(qit)

Get the term clustering of the model.

This function takes a matrix qit and compute the term clustering based on their values. It calculates the number of occurrences of each value for each row in the matrix.

Parameters

qit : ndarray Input matrix containing terms clustering to be sorted.

Returns

N_aux : ndarray A new matrix with rows representing the number of occurrences of each value for each row in the input matrix qit. The columns correspond to different values.

Examples

qit = np.array([[1, 2, 2], ... [1, 3, 1], ... [2, 2, 3]]) result = get_term_clustering(qit) print(result) [[1. 2. 0. 0.][2. 0. 1. 0.] [0. 2. 1. 0.]]

Notes

The function calculates the number of occurrences of each value (from 1 to the maximum value in the input matrix qit) for each row and returns a matrix where rows represent rows of the input matrix qit, and columns represent different values.

Source code in sysidentpy/multiobjective_parameter_estimation/estimators.py
def get_term_clustering(self, qit: np.ndarray) -> np.ndarray:
    """Get the term clustering of the model.

    This function takes a matrix `qit` and compute the term clustering based
    on their values. It calculates the number of occurrences of each value
    for each row in the matrix.

    Parameters
    ----------
    qit : ndarray
        Input matrix containing terms clustering to be sorted.

    Returns
    -------
    N_aux : ndarray
        A new matrix with rows representing the number of occurrences of each value
        for each row in the input matrix `qit`. The columns correspond to different
        values.

    Examples
    --------
    >>> qit = np.array([[1, 2, 2],
    ...                 [1, 3, 1],
    ...                 [2, 2, 3]])
    >>> result = get_term_clustering(qit)
    >>> print(result)
    [[1. 2. 0. 0.]
    [2. 0. 1. 0.]
    [0. 2. 1. 0.]]

    Notes
    -----
    The function calculates the number of occurrences of each value (from 1 to
    the maximum value in the input matrix `qit`) for each row and returns a matrix
    where rows represent rows of the input matrix `qit`, and columns represent
    different values.

    """
    max_value = int(np.max(qit))
    counts_matrix = np.zeros((qit.shape[0], max_value))

    for k in range(1, max_value + 1):
        counts_matrix[:, k - 1] = np.sum(qit == k, axis=1)

    return counts_matrix.astype(int)