Documentation for Metaheuristics
¶
Binary Hybrid Particle Swarm Optimization and Gravitational Search Algorithm.
BPSOGSA
¶
Binary Hybrid Particle Swarm Optimization and Gravitational Search Algorithm.
Parameters¶
maxiter : int, default=30 The maximum number of iterations. alpha : int, default=23 The descending coefficient of the gravitational constant. g_zero : int, default=100 The initial value of the gravitational constant. k_agents_percent: int, default=2 Percent of agents applying force to the others in the last iteration. norm : int, default=-2 The information criteria method to be used. power : int, default=2 The number of the model terms to be selected. Note that n_terms overwrite the information criteria values. n_agents : int, default=10 The number of agents to search the optimal solution. dimension : int, default=15 The dimension of the search space. criteria method. p_zeros : float, default=0.5 The probability of getting ones in the construction of the population. p_zeros : float, default=0.5 The probability of getting zeros in the construction of the population.
Examples¶
import numpy as np import matplotlib.pyplot as plt from sysidentpy.metaheuristics import BPSOGSA opt = BPSOGSA(maxiter=100, ... k_agents_percent=2, ... n_agents=10, ... dimension=20 ... ) opt.optimize() plt.plot(opt.best_by_iter) plt.show() print(opt.optimal_fitness_value)
References¶
- A New Hybrid PSOGSA Algorithm for Function Optimization, https://www.mathworks.com/matlabcentral/fileexchange/35939-hybrid-particle-swarm-optimization-and-gravitational-search-algorithm-psogsa
- Manuscript: Particle swarm optimization: developments, applications and resources.
- Manuscript: S-shaped versus v-shaped transfer functions for binary particle swarm optimization
- Manuscript: BGSA: Binary Gravitational Search Algorithm.
- Manuscript: A taxonomy of hybrid metaheuristics
Source code in sysidentpy/metaheuristics/bpsogsa.py
12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 |
|
calculate_acceleration(population, agent_mass, gravitational_constant, iteration)
¶
Calculate the acceleration of each agent.
Parameters¶
population : ndarray of zeros and ones The population defined by the agents. agent_mass : ndarray of floats The mass of each agent. gravitational_constant : float The gravitational_constant at time defined by the iteration. iteration : int The current iteration.
Returns¶
acceleration : ndarray of floats The acceleration of each agent.
Source code in sysidentpy/metaheuristics/bpsogsa.py
calculate_gravitational_constant(iteration)
¶
Update the gravitational constant.
Parameters¶
iteration : int The specific time.
Returns¶
gravitational_constant : float The gravitational_constant at time defined by the iteration.
Source code in sysidentpy/metaheuristics/bpsogsa.py
evaluate_objective_function(candidate_solution)
¶
generate_random_population(random_state=None)
¶
Generate the initial population of agents randomly.
Returns¶
population : ndarray of zeros and ones The initial population of agents.
Source code in sysidentpy/metaheuristics/bpsogsa.py
mass_calculation(fitness_value)
¶
Calculate the inertial masses of the agents.
Parameters¶
fitness_value : ndarray The fitness value of each agent.
Returns¶
agent_mass : ndarray of floats The mass of each agent.
Source code in sysidentpy/metaheuristics/bpsogsa.py
optimize()
¶
Run the BPSOGSA algorithm.
This algorithm is based on the Matlab implementation provided by the author of the BPSOGSA algorithm.
References¶
- A New Hybrid PSOGSA Algorithm for Function Optimization. https://www.mathworks.com/matlabcentral/fileexchange/35939-hybrid-particle-swarm-optimization-and-gravitational-search-algorithm-psogsa
- Manuscript: Particle swarm optimization: developments, applications and resources.
- Manuscript: S-shaped versus v-shaped transfer functions for binary. particle swarm optimization
- Manuscript: BGSA: Binary Gravitational Search Algorithm.
- Manuscript: A taxonomy of hybrid metaheuristics.
Source code in sysidentpy/metaheuristics/bpsogsa.py
update_velocity_position(population, acceleration, velocity, iteration)
¶
Update the velocity and position of each agent.
Parameters¶
population : ndarray of zeros and ones The population defined by the agents. acceleration : ndarray of floats The acceleration of each agent. velocity : ndarray of floats The velocity of each agent. iteration : int The current iteration.
Returns¶
velocity : ndarray of floats The updated velocity of each agent. population : ndarray of zeros and ones The updated population defined by the agents.