Skip to content

Documentation for FROLS

Build Polynomial NARMAX Models using FROLS algorithm.

FROLS

Bases: BaseMSS

Forward Regression Orthogonal Least Squares algorithm.

This class uses the FROLS algorithm ([1], [2]) to build NARMAX models. The NARMAX model is described as:

\[ y_k= F^\ell[y_{k-1}, \dotsc, y_{k-n_y},x_{k-d}, x_{k-d-1}, \dotsc, x_{k-d-n_x}, e_{k-1}, \dotsc, e_{k-n_e}] + e_k \]

where \(n_y\in \mathbb{N}^*\), \(n_x \in \mathbb{N}\), \(n_e \in \mathbb{N}\), are the maximum lags for the system output and input respectively; \(x_k \in \mathbb{R}^{n_x}\) is the system input and \(y_k \in \mathbb{R}^{n_y}\) is the system output at discrete time \(k \in \mathbb{N}^n\); $e_k \in \mathbb{R}^{n_e}4 stands for uncertainties and possible noise at discrete time \(k\). In this case, \(\mathcal{F}^\ell\) is some nonlinear function of the input and output regressors with nonlinearity degree \(\ell \in \mathbb{N}\) and \(d\) is a time delay typically set to \(d=1\).

Parameters

ylag : int, default=2 The maximum lag of the output. xlag : int, default=2 The maximum lag of the input. elag : int, default=2 The maximum lag of the residues regressors. order_selection: bool, default=False Whether to use information criteria for order selection. info_criteria : str, default="aic" The information criteria method to be used. n_terms : int, default=None The number of the model terms to be selected. Note that n_terms overwrite the information criteria values. n_info_values : int, default=10 The number of iterations of the information criteria method. estimator : str, default="least_squares" The parameter estimation method. model_type: str, default="NARMAX" The user can choose "NARMAX", "NAR" and "NFIR" models eps : float, default=np.finfo(np.float64).eps Normalization factor of the normalized filters. alpha : float, default=np.finfo(np.float64).eps Regularization parameter used in ridge regression. Ridge regression parameter that regularizes the algorithm to prevent over fitting. If the input is a noisy signal, the ridge parameter is likely to be set close to the noise level, at least as a starting point. Entered through the self data structure.

Examples

import numpy as np import matplotlib.pyplot as plt from sysidentpy.model_structure_selection import FROLS from sysidentpy.basis_function._basis_function import Polynomial from sysidentpy.utils.display_results import results from sysidentpy.metrics import root_relative_squared_error from sysidentpy.utils.generate_data import get_miso_data, get_siso_data x_train, x_valid, y_train, y_valid = get_siso_data(n=1000, ... colored_noise=True, ... sigma=0.2, ... train_percentage=90) basis_function = Polynomial(degree=2) model = PolynomialNarmax(basis_function=basis_function, ... order_selection=True, ... n_info_values=10, ... extended_least_squares=False, ... ylag=2, xlag=2, ... info_criteria='aic', ... estimator='least_squares', ... ) model.fit(x_train, y_train) yhat = model.predict(x_valid, y_valid) rrse = root_relative_squared_error(y_valid, yhat) print(rrse) 0.001993603325328823 r = pd.DataFrame( ... results( ... model.final_model, model.theta, model.err, ... model.n_terms, err_precision=8, dtype='sci' ... ), ... columns=['Regressors', 'Parameters', 'ERR']) print® Regressors Parameters ERR 0 x1(k-2) 0.9000 0.0 1 y(k-1) 0.1999 0.0 2 x1(k-1)y(k-1) 0.1000 0.0

References

  • Manuscript: Orthogonal least squares methods and their application to non-linear system identification https://eprints.soton.ac.uk/251147/1/778742007_content.pdf
  • Manuscript (portuguese): Identificação de Sistemas não Lineares Utilizando Modelos NARMAX Polinomiais - Uma Revisão e Novos Resultados
Source code in sysidentpy/model_structure_selection/forward_regression_orthogonal_least_squares.py
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
class FROLS(BaseMSS):
    r"""Forward Regression Orthogonal Least Squares algorithm.

    This class uses the FROLS algorithm ([1]_, [2]_) to build NARMAX models.
    The NARMAX model is described as:

    $$
        y_k= F^\ell[y_{k-1}, \dotsc, y_{k-n_y},x_{k-d}, x_{k-d-1},
        \dotsc, x_{k-d-n_x}, e_{k-1}, \dotsc, e_{k-n_e}] + e_k
    $$

    where $n_y\in \mathbb{N}^*$, $n_x \in \mathbb{N}$, $n_e \in \mathbb{N}$,
    are the maximum lags for the system output and input respectively;
    $x_k \in \mathbb{R}^{n_x}$ is the system input and $y_k \in \mathbb{R}^{n_y}$
    is the system output at discrete time $k \in \mathbb{N}^n$;
    $e_k \in \mathbb{R}^{n_e}4 stands for uncertainties and possible noise
    at discrete time $k$. In this case, $\mathcal{F}^\ell$ is some nonlinear function
    of the input and output regressors with nonlinearity degree $\ell \in \mathbb{N}$
    and $d$ is a time delay typically set to $d=1$.

    Parameters
    ----------
    ylag : int, default=2
        The maximum lag of the output.
    xlag : int, default=2
        The maximum lag of the input.
    elag : int, default=2
        The maximum lag of the residues regressors.
    order_selection: bool, default=False
        Whether to use information criteria for order selection.
    info_criteria : str, default="aic"
        The information criteria method to be used.
    n_terms : int, default=None
        The number of the model terms to be selected.
        Note that n_terms overwrite the information criteria
        values.
    n_info_values : int, default=10
        The number of iterations of the information
        criteria method.
    estimator : str, default="least_squares"
        The parameter estimation method.
    model_type: str, default="NARMAX"
        The user can choose "NARMAX", "NAR" and "NFIR" models
    eps : float, default=np.finfo(np.float64).eps
        Normalization factor of the normalized filters.
    alpha : float, default=np.finfo(np.float64).eps
        Regularization parameter used in ridge regression.
        Ridge regression parameter that regularizes the algorithm to prevent over
        fitting. If the input is a noisy signal, the ridge parameter is likely to be
        set close to the noise level, at least as a starting point.
        Entered through the self data structure.

    Examples
    --------
    >>> import numpy as np
    >>> import matplotlib.pyplot as plt
    >>> from sysidentpy.model_structure_selection import FROLS
    >>> from sysidentpy.basis_function._basis_function import Polynomial
    >>> from sysidentpy.utils.display_results import results
    >>> from sysidentpy.metrics import root_relative_squared_error
    >>> from sysidentpy.utils.generate_data import get_miso_data, get_siso_data
    >>> x_train, x_valid, y_train, y_valid = get_siso_data(n=1000,
    ...                                                    colored_noise=True,
    ...                                                    sigma=0.2,
    ...                                                    train_percentage=90)
    >>> basis_function = Polynomial(degree=2)
    >>> model = PolynomialNarmax(basis_function=basis_function,
    ...                          order_selection=True,
    ...                          n_info_values=10,
    ...                          extended_least_squares=False,
    ...                          ylag=2, xlag=2,
    ...                          info_criteria='aic',
    ...                          estimator='least_squares',
    ...                          )
    >>> model.fit(x_train, y_train)
    >>> yhat = model.predict(x_valid, y_valid)
    >>> rrse = root_relative_squared_error(y_valid, yhat)
    >>> print(rrse)
    0.001993603325328823
    >>> r = pd.DataFrame(
    ...     results(
    ...         model.final_model, model.theta, model.err,
    ...         model.n_terms, err_precision=8, dtype='sci'
    ...         ),
    ...     columns=['Regressors', 'Parameters', 'ERR'])
    >>> print(r)
        Regressors Parameters         ERR
    0        x1(k-2)     0.9000       0.0
    1         y(k-1)     0.1999       0.0
    2  x1(k-1)y(k-1)     0.1000       0.0

    References
    ----------
    - Manuscript: Orthogonal least squares methods and their application
       to non-linear system identification
       https://eprints.soton.ac.uk/251147/1/778742007_content.pdf
    - Manuscript (portuguese): Identificação de Sistemas não Lineares
       Utilizando Modelos NARMAX Polinomiais - Uma Revisão
       e Novos Resultados

    """

    def __init__(
        self,
        *,
        ylag: Union[int, list] = 2,
        xlag: Union[int, list] = 2,
        elag: Union[int, list] = 2,
        order_selection: bool = True,
        info_criteria: str = "aic",
        n_terms: Union[int, None] = None,
        n_info_values: int = 15,
        estimator: Estimators = RecursiveLeastSquares(),
        basis_function: Union[Polynomial, Fourier] = Polynomial(),
        model_type: str = "NARMAX",
        eps: np.float64 = np.finfo(np.float64).eps,
        alpha: float = 0,
        err_tol: Optional[float] = None,
    ):
        self.order_selection = order_selection
        self.ylag = ylag
        self.xlag = xlag
        self.max_lag = self._get_max_lag()
        self.info_criteria = info_criteria
        self.info_criteria_function = self.get_info_criteria(info_criteria)
        self.n_info_values = n_info_values
        self.n_terms = n_terms
        self.estimator = estimator
        self.elag = elag
        self.model_type = model_type
        self.build_matrix = self.get_build_io_method(model_type)
        self.basis_function = basis_function
        self.eps = eps
        if isinstance(self.estimator, RidgeRegression):
            self.alpha = self.estimator.alpha
        else:
            self.alpha = alpha

        self.err_tol = err_tol
        self._validate_params()
        self.n_inputs = None
        self.regressor_code = None
        self.info_values = None
        self.err = None
        self.final_model = None
        self.theta = None
        self.pivv = None

    def _validate_params(self):
        """Validate input params."""
        if not isinstance(self.n_info_values, int) or self.n_info_values < 1:
            raise ValueError(
                f"n_info_values must be integer and > zero. Got {self.n_info_values}"
            )

        if isinstance(self.ylag, int) and self.ylag < 1:
            raise ValueError(f"ylag must be integer and > zero. Got {self.ylag}")

        if isinstance(self.xlag, int) and self.xlag < 1:
            raise ValueError(f"xlag must be integer and > zero. Got {self.xlag}")

        if not isinstance(self.xlag, (int, list)):
            raise ValueError(f"xlag must be integer and > zero. Got {self.xlag}")

        if not isinstance(self.ylag, (int, list)):
            raise ValueError(f"ylag must be integer and > zero. Got {self.ylag}")

        if not isinstance(self.order_selection, bool):
            raise TypeError(
                f"order_selection must be False or True. Got {self.order_selection}"
            )

        if self.info_criteria not in ["aic", "aicc", "bic", "fpe", "lilc"]:
            raise ValueError(
                f"info_criteria must be aic, bic, fpe or lilc. Got {self.info_criteria}"
            )

        if self.model_type not in ["NARMAX", "NAR", "NFIR"]:
            raise ValueError(
                f"model_type must be NARMAX, NAR or NFIR. Got {self.model_type}"
            )

        if (
            not isinstance(self.n_terms, int) or self.n_terms < 1
        ) and self.n_terms is not None:
            raise ValueError(f"n_terms must be integer and > zero. Got {self.n_terms}")

    def error_reduction_ratio(
        self, psi: np.ndarray, y: np.ndarray, process_term_number: int
    ) -> Tuple[np.ndarray, np.ndarray, np.ndarray]:
        """Perform the Error Reduction Ration algorithm.

        Parameters
        ----------
        y : array-like of shape = n_samples
            The target data used in the identification process.
        psi : ndarray of floats
            The information matrix of the model.
        process_term_number : int
            Number of Process Terms defined by the user.

        Returns
        -------
        err : array-like of shape = number_of_model_elements
            The respective ERR calculated for each regressor.
        piv : array-like of shape = number_of_model_elements
            Contains the index to put the regressors in the correct order
            based on err values.
        psi_orthogonal : ndarray of floats
            The updated and orthogonal information matrix.

        References
        ----------
        - Manuscript: Orthogonal least squares methods and their application
           to non-linear system identification
           https://eprints.soton.ac.uk/251147/1/778742007_content.pdf
        - Manuscript (portuguese): Identificação de Sistemas não Lineares
           Utilizando Modelos NARMAX Polinomiais - Uma Revisão
           e Novos Resultados

        """
        squared_y = np.dot(y[self.max_lag :].T, y[self.max_lag :])
        tmp_psi = psi.copy()
        y = y[self.max_lag :, 0].reshape(-1, 1)
        tmp_y = y.copy()
        dimension = tmp_psi.shape[1]
        piv = np.arange(dimension)
        tmp_err = np.zeros(dimension)
        err = np.zeros(dimension)

        for i in np.arange(0, dimension):
            for j in np.arange(i, dimension):
                # Add `eps` in the denominator to omit division by zero if
                # denominator is zero
                # To implement regularized regression (ridge regression), add
                # alpha to psi.T @ psi.   See S. Chen, Local regularization assisted
                # orthogonal least squares regression, Neurocomputing 69 (2006) 559-585.
                # The version implemented below uses the same regularization for every
                # feature, # What Chen refers to Uniform regularized orthogonal least
                # squares (UROLS) Set to tiny (self.eps) when you are not regularizing.
                # alpha = eps is the default.
                tmp_err[j] = (
                    (np.dot(tmp_psi[i:, j].T, tmp_y[i:]) ** 2)
                    / (
                        (np.dot(tmp_psi[i:, j].T, tmp_psi[i:, j]) + self.alpha)
                        * squared_y
                    )
                    + self.eps
                )[0, 0]

            piv_index = np.argmax(tmp_err[i:]) + i
            err[i] = tmp_err[piv_index]
            if i == process_term_number:
                break

            if (self.err_tol is not None) and (err.cumsum()[i] >= self.err_tol):
                self.n_terms = i + 1
                process_term_number = i + 1
                break

            tmp_psi[:, [piv_index, i]] = tmp_psi[:, [i, piv_index]]
            piv[[piv_index, i]] = piv[[i, piv_index]]
            v = Orthogonalization().house(tmp_psi[i:, i])
            row_result = Orthogonalization().rowhouse(tmp_psi[i:, i:], v)
            tmp_y[i:] = Orthogonalization().rowhouse(tmp_y[i:], v)
            tmp_psi[i:, i:] = np.copy(row_result)

        tmp_piv = piv[0:process_term_number]
        psi_orthogonal = psi[:, tmp_piv]
        return err, tmp_piv, psi_orthogonal

    def information_criterion(self, X: np.ndarray, y: np.ndarray) -> np.ndarray:
        """Determine the model order.

        This function uses a information criterion to determine the model size.
        'Akaike'-  Akaike's Information Criterion with
                   critical value 2 (AIC) (default).
        'Bayes' -  Bayes Information Criterion (BIC).
        'FPE'   -  Final Prediction Error (FPE).
        'LILC'  -  Khundrin's law ofiterated logarithm criterion (LILC).

        Parameters
        ----------
        y : array-like of shape = n_samples
            Target values of the system.
        X : array-like of shape = n_samples
            Input system values measured by the user.

        Returns
        -------
        output_vector : array-like of shape = n_regressor
            Vector with values of akaike's information criterion
            for models with N terms (where N is the
            vector position + 1).

        """
        if self.n_info_values is not None and self.n_info_values > X.shape[1]:
            self.n_info_values = X.shape[1]
            warnings.warn(
                "n_info_values is greater than the maximum number of all"
                " regressors space considering the chosen y_lag, u_lag, and"
                f" non_degree. We set as {X.shape[1]}",
                stacklevel=2,
            )

        output_vector = np.zeros(self.n_info_values)
        output_vector[:] = np.nan

        n_samples = len(y) - self.max_lag

        for i in range(self.n_info_values):
            n_theta = i + 1
            regressor_matrix = self.error_reduction_ratio(X, y, n_theta)[2]

            tmp_theta = self.estimator.optimize(
                regressor_matrix, y[self.max_lag :, 0].reshape(-1, 1)
            )

            tmp_yhat = np.dot(regressor_matrix, tmp_theta)
            tmp_residual = y[self.max_lag :] - tmp_yhat
            e_var = np.var(tmp_residual, ddof=1)
            output_vector[i] = self.info_criteria_function(n_theta, n_samples, e_var)

        return output_vector

    def get_info_criteria(self, info_criteria: str):
        """Get info criteria."""
        info_criteria_options = {
            "aic": self.aic,
            "aicc": self.aicc,
            "bic": self.bic,
            "fpe": self.fpe,
            "lilc": self.lilc,
        }
        return info_criteria_options.get(info_criteria)

    def bic(self, n_theta: int, n_samples: int, e_var: float) -> float:
        """Compute the Bayesian information criteria value.

        Parameters
        ----------
        n_theta : int
            Number of parameters of the model.
        n_samples : int
            Number of samples given the maximum lag.
        e_var : float
            Variance of the residues

        Returns
        -------
        info_criteria_value : float
            The computed value given the information criteria selected by the
            user.

        """
        model_factor = n_theta * np.log(n_samples)
        e_factor = n_samples * np.log(e_var)
        info_criteria_value = e_factor + model_factor

        return info_criteria_value

    def aic(self, n_theta: int, n_samples: int, e_var: float) -> float:
        """Compute the Akaike information criteria value.

        Parameters
        ----------
        n_theta : int
            Number of parameters of the model.
        n_samples : int
            Number of samples given the maximum lag.
        e_var : float
            Variance of the residues

        Returns
        -------
        info_criteria_value : float
            The computed value given the information criteria selected by the
            user.

        """
        model_factor = 2 * n_theta
        e_factor = n_samples * np.log(e_var)
        info_criteria_value = e_factor + model_factor

        return info_criteria_value

    def aicc(self, n_theta: int, n_samples: int, e_var: float) -> float:
        """Compute the Akaike information Criteria corrected value.

        Parameters
        ----------
        n_theta : int
            Number of parameters of the model.
        n_samples : int
            Number of samples given the maximum lag.
        e_var : float
            Variance of the residues

        Returns
        -------
        aicc : float
            The computed aicc value.

        References
        ----------
        - https://www.mathworks.com/help/ident/ref/idmodel.aic.html

        """
        aic = self.aic(n_theta, n_samples, e_var)
        aicc = aic + (2 * n_theta * (n_theta + 1) / (n_samples - n_theta - 1))

        return aicc

    def fpe(self, n_theta: int, n_samples: int, e_var: float) -> float:
        """Compute the Final Error Prediction value.

        Parameters
        ----------
        n_theta : int
            Number of parameters of the model.
        n_samples : int
            Number of samples given the maximum lag.
        e_var : float
            Variance of the residues

        Returns
        -------
        info_criteria_value : float
            The computed value given the information criteria selected by the
            user.

        """
        model_factor = n_samples * np.log((n_samples + n_theta) / (n_samples - n_theta))
        e_factor = n_samples * np.log(e_var)
        info_criteria_value = e_factor + model_factor

        return info_criteria_value

    def lilc(self, n_theta: int, n_samples: int, e_var: float) -> float:
        """Compute the Lilc information criteria value.

        Parameters
        ----------
        n_theta : int
            Number of parameters of the model.
        n_samples : int
            Number of samples given the maximum lag.
        e_var : float
            Variance of the residues

        Returns
        -------
        info_criteria_value : float
            The computed value given the information criteria selected by the
            user.

        """
        model_factor = 2 * n_theta * np.log(np.log(n_samples))
        e_factor = n_samples * np.log(e_var)
        info_criteria_value = e_factor + model_factor

        return info_criteria_value

    def get_min_info_value(self, info_values):
        """Find the index of the first increasing value in an array.

        Parameters
        ----------
        info_values : array-like
            A sequence of numeric values to be analyzed.

        Returns
        -------
        int
            The index of the first element where the values start to increase
            monotonically. If no such element exists, the length of
            `info_values` is returned.

        Notes
        -----
        - The function assumes that `info_values` is a 1-dimensional array-like
        structure.
        - The function uses `np.diff` to compute the difference between consecutive
        elements in the sequence.
        - The function checks if any differences are positive, indicating an increase
        in value.

        Examples
        --------
        >>> class MyClass:
        ...     def __init__(self, values):
        ...         self.info_values = values
        ...     def get_min_info_value(self):
        ...         is_monotonique = np.diff(self.info_values) > 0
        ...         if any(is_monotonique):
        ...             return np.where(is_monotonique)[0][0] + 1
        ...         return len(self.info_values)
        >>> instance = MyClass([3, 2, 1, 4, 5])
        >>> instance.get_min_info_value()
        3
        """
        is_monotonique = np.diff(info_values) > 0
        if any(is_monotonique):
            return np.where(is_monotonique)[0][0] + 1
        return len(info_values)

    def fit(self, *, X: Optional[np.ndarray] = None, y: np.ndarray):
        """Fit polynomial NARMAX model.

        This is an 'alpha' version of the 'fit' function which allows
        a friendly usage by the user. Given two arguments, X and y, fit
        training data.

        Parameters
        ----------
        X : ndarray of floats
            The input data to be used in the training process.
        y : ndarray of floats
            The output data to be used in the training process.

        Returns
        -------
        model : ndarray of int
            The model code representation.
        piv : array-like of shape = number_of_model_elements
            Contains the index to put the regressors in the correct order
            based on err values.
        theta : array-like of shape = number_of_model_elements
            The estimated parameters of the model.
        err : array-like of shape = number_of_model_elements
            The respective ERR calculated for each regressor.
        info_values : array-like of shape = n_regressor
            Vector with values of akaike's information criterion
            for models with N terms (where N is the
            vector position + 1).

        """
        if y is None:
            raise ValueError("y cannot be None")

        self.max_lag = self._get_max_lag()
        lagged_data = self.build_matrix(X, y)

        reg_matrix = self.basis_function.fit(
            lagged_data,
            self.max_lag,
            self.ylag,
            self.xlag,
            self.model_type,
            predefined_regressors=None,
        )

        if X is not None:
            self.n_inputs = _num_features(X)
        else:
            self.n_inputs = 1  # just to create the regressor space base

        self.regressor_code = self.regressor_space(self.n_inputs)

        if self.order_selection is True:
            self.info_values = self.information_criterion(reg_matrix, y)

        if self.n_terms is None and self.order_selection is True:
            model_length = self.get_min_info_value(self.info_values)
            self.n_terms = model_length
        elif self.n_terms is None and self.order_selection is not True:
            raise ValueError(
                "If order_selection is False, you must define n_terms value."
            )
        else:
            model_length = self.n_terms

        (self.err, self.pivv, psi) = self.error_reduction_ratio(
            reg_matrix, y, model_length
        )

        tmp_piv = self.pivv[0:model_length]
        repetition = len(reg_matrix)
        if isinstance(self.basis_function, Polynomial):
            self.final_model = self.regressor_code[tmp_piv, :].copy()
        else:
            self.regressor_code = np.sort(
                np.tile(self.regressor_code[1:, :], (repetition, 1)),
                axis=0,
            )
            self.final_model = self.regressor_code[tmp_piv, :].copy()

        self.theta = self.estimator.optimize(psi, y[self.max_lag :, 0].reshape(-1, 1))
        if self.estimator.unbiased is True:
            self.theta = self.estimator.unbiased_estimator(
                psi,
                y[self.max_lag :, 0].reshape(-1, 1),
                self.theta,
                self.elag,
                self.max_lag,
                self.estimator,
                self.basis_function,
                self.estimator.uiter,
            )
        return self

    def predict(
        self,
        *,
        X: Optional[np.ndarray] = None,
        y: np.ndarray,
        steps_ahead: Optional[int] = None,
        forecast_horizon: Optional[int] = None,
    ) -> np.ndarray:
        """Return the predicted values given an input.

        The predict function allows a friendly usage by the user.
        Given a previously trained model, predict values given
        a new set of data.

        This method accept y values mainly for prediction n-steps ahead
        (to be implemented in the future)

        Parameters
        ----------
        X : ndarray of floats
            The input data to be used in the prediction process.
        y : ndarray of floats
            The output data to be used in the prediction process.
        steps_ahead : int (default = None)
            The user can use free run simulation, one-step ahead prediction
            and n-step ahead prediction.
        forecast_horizon : int, default=None
            The number of predictions over the time.

        Returns
        -------
        yhat : ndarray of floats
            The predicted values of the model.

        """
        if isinstance(self.basis_function, Polynomial):
            if steps_ahead is None:
                yhat = self._model_prediction(X, y, forecast_horizon=forecast_horizon)
                yhat = np.concatenate([y[: self.max_lag], yhat], axis=0)
                return yhat
            if steps_ahead == 1:
                yhat = self._one_step_ahead_prediction(X, y)
                yhat = np.concatenate([y[: self.max_lag], yhat], axis=0)
                return yhat

            _check_positive_int(steps_ahead, "steps_ahead")
            yhat = self._n_step_ahead_prediction(X, y, steps_ahead=steps_ahead)
            yhat = np.concatenate([y[: self.max_lag], yhat], axis=0)
            return yhat

        if steps_ahead is None:
            yhat = self._basis_function_predict(X, y, forecast_horizon)
            yhat = np.concatenate([y[: self.max_lag], yhat], axis=0)
            return yhat
        if steps_ahead == 1:
            yhat = self._one_step_ahead_prediction(X, y)
            yhat = np.concatenate([y[: self.max_lag], yhat], axis=0)
            return yhat

        yhat = self._basis_function_n_step_prediction(
            X, y, steps_ahead, forecast_horizon
        )
        yhat = np.concatenate([y[: self.max_lag], yhat], axis=0)
        return yhat

    def _one_step_ahead_prediction(
        self, X: Optional[np.ndarray], y: Optional[np.ndarray]
    ) -> np.ndarray:
        """Perform the 1-step-ahead prediction of a model.

        Parameters
        ----------
        y : array-like of shape = max_lag
            Initial conditions values of the model
            to start recursive process.
        X : ndarray of floats of shape = n_samples
            Vector with input values to be used in model simulation.

        Returns
        -------
        yhat : ndarray of floats
               The 1-step-ahead predicted values of the model.

        """
        lagged_data = self.build_matrix(X, y)

        X_base = self.basis_function.transform(
            lagged_data,
            self.max_lag,
            self.ylag,
            self.xlag,
            self.model_type,
            predefined_regressors=self.pivv[: len(self.final_model)],
        )

        yhat = super()._one_step_ahead_prediction(X_base)
        return yhat.reshape(-1, 1)

    def _n_step_ahead_prediction(
        self, X: Optional[np.ndarray], y: Optional[np.ndarray], steps_ahead: int
    ) -> float:
        """Perform the n-steps-ahead prediction of a model.

        Parameters
        ----------
        y : array-like of shape = max_lag
            Initial conditions values of the model
            to start recursive process.
        X : ndarray of floats of shape = n_samples
            Vector with input values to be used in model simulation.

        Returns
        -------
        yhat : ndarray of floats
               The n-steps-ahead predicted values of the model.

        """
        yhat = super()._n_step_ahead_prediction(X, y, steps_ahead)
        return yhat

    def _model_prediction(
        self,
        X: Optional[np.ndarray],
        y_initial: np.ndarray,
        forecast_horizon: int = 0,
    ) -> np.ndarray:
        """Perform the infinity steps-ahead simulation of a model.

        Parameters
        ----------
        y_initial : array-like of shape = max_lag
            Number of initial conditions values of output
            to start recursive process.
        X : ndarray of floats of shape = n_samples
            Vector with input values to be used in model simulation.

        Returns
        -------
        yhat : ndarray of floats
               The predicted values of the model.

        """
        if self.model_type in ["NARMAX", "NAR"]:
            return self._narmax_predict(X, y_initial, forecast_horizon)

        if self.model_type == "NFIR":
            return self._nfir_predict(X, y_initial)

        raise ValueError(
            f"model_type must be NARMAX, NAR or NFIR. Got {self.model_type}"
        )

    def _narmax_predict(
        self,
        X: Optional[np.ndarray],
        y_initial: np.ndarray,
        forecast_horizon: int = 0,
    ) -> np.ndarray:
        if len(y_initial) < self.max_lag:
            raise ValueError(
                "Insufficient initial condition elements! Expected at least"
                f" {self.max_lag} elements."
            )

        if X is not None:
            forecast_horizon = X.shape[0]
        else:
            forecast_horizon = forecast_horizon + self.max_lag

        if self.model_type == "NAR":
            self.n_inputs = 0

        y_output = super()._narmax_predict(X, y_initial, forecast_horizon)
        return y_output

    def _nfir_predict(
        self, X: Optional[np.ndarray], y_initial: Optional[np.ndarray]
    ) -> np.ndarray:
        y_output = super()._nfir_predict(X, y_initial)
        return y_output

    def _basis_function_predict(
        self,
        X: Optional[np.ndarray],
        y_initial: Optional[np.ndarray],
        forecast_horizon: int = 0,
    ) -> np.ndarray:
        if X is not None:
            forecast_horizon = X.shape[0]
        else:
            forecast_horizon = forecast_horizon + self.max_lag

        if self.model_type == "NAR":
            self.n_inputs = 0

        yhat = super()._basis_function_predict(X, y_initial, forecast_horizon)
        return yhat.reshape(-1, 1)

    def _basis_function_n_step_prediction(
        self,
        X: Optional[np.ndarray],
        y: np.ndarray,
        steps_ahead: Optional[int],
        forecast_horizon: int,
    ) -> np.ndarray:
        """Perform the n-steps-ahead prediction of a model.

        Parameters
        ----------
        y : array-like of shape = max_lag
            Initial conditions values of the model
            to start recursive process.
        X : ndarray of floats of shape = n_samples
            Vector with input values to be used in model simulation.

        Returns
        -------
        yhat : ndarray of floats
               The n-steps-ahead predicted values of the model.

        """
        if len(y) < self.max_lag:
            raise ValueError(
                "Insufficient initial condition elements! Expected at least"
                f" {self.max_lag} elements."
            )

        if X is not None:
            forecast_horizon = X.shape[0]
        else:
            forecast_horizon = forecast_horizon + self.max_lag

        yhat = super()._basis_function_n_step_prediction(
            X, y, steps_ahead, forecast_horizon
        )
        return yhat.reshape(-1, 1)

    def _basis_function_n_steps_horizon(
        self,
        X: Optional[np.ndarray],
        y: Optional[np.ndarray],
        steps_ahead: Optional[int],
        forecast_horizon: int,
    ) -> np.ndarray:
        yhat = super()._basis_function_n_steps_horizon(
            X, y, steps_ahead, forecast_horizon
        )
        return yhat.reshape(-1, 1)

aic(n_theta, n_samples, e_var)

Compute the Akaike information criteria value.

Parameters

n_theta : int Number of parameters of the model. n_samples : int Number of samples given the maximum lag. e_var : float Variance of the residues

Returns

info_criteria_value : float The computed value given the information criteria selected by the user.

Source code in sysidentpy/model_structure_selection/forward_regression_orthogonal_least_squares.py
def aic(self, n_theta: int, n_samples: int, e_var: float) -> float:
    """Compute the Akaike information criteria value.

    Parameters
    ----------
    n_theta : int
        Number of parameters of the model.
    n_samples : int
        Number of samples given the maximum lag.
    e_var : float
        Variance of the residues

    Returns
    -------
    info_criteria_value : float
        The computed value given the information criteria selected by the
        user.

    """
    model_factor = 2 * n_theta
    e_factor = n_samples * np.log(e_var)
    info_criteria_value = e_factor + model_factor

    return info_criteria_value

aicc(n_theta, n_samples, e_var)

Compute the Akaike information Criteria corrected value.

Parameters

n_theta : int Number of parameters of the model. n_samples : int Number of samples given the maximum lag. e_var : float Variance of the residues

Returns

aicc : float The computed aicc value.

References
Source code in sysidentpy/model_structure_selection/forward_regression_orthogonal_least_squares.py
def aicc(self, n_theta: int, n_samples: int, e_var: float) -> float:
    """Compute the Akaike information Criteria corrected value.

    Parameters
    ----------
    n_theta : int
        Number of parameters of the model.
    n_samples : int
        Number of samples given the maximum lag.
    e_var : float
        Variance of the residues

    Returns
    -------
    aicc : float
        The computed aicc value.

    References
    ----------
    - https://www.mathworks.com/help/ident/ref/idmodel.aic.html

    """
    aic = self.aic(n_theta, n_samples, e_var)
    aicc = aic + (2 * n_theta * (n_theta + 1) / (n_samples - n_theta - 1))

    return aicc

bic(n_theta, n_samples, e_var)

Compute the Bayesian information criteria value.

Parameters

n_theta : int Number of parameters of the model. n_samples : int Number of samples given the maximum lag. e_var : float Variance of the residues

Returns

info_criteria_value : float The computed value given the information criteria selected by the user.

Source code in sysidentpy/model_structure_selection/forward_regression_orthogonal_least_squares.py
def bic(self, n_theta: int, n_samples: int, e_var: float) -> float:
    """Compute the Bayesian information criteria value.

    Parameters
    ----------
    n_theta : int
        Number of parameters of the model.
    n_samples : int
        Number of samples given the maximum lag.
    e_var : float
        Variance of the residues

    Returns
    -------
    info_criteria_value : float
        The computed value given the information criteria selected by the
        user.

    """
    model_factor = n_theta * np.log(n_samples)
    e_factor = n_samples * np.log(e_var)
    info_criteria_value = e_factor + model_factor

    return info_criteria_value

error_reduction_ratio(psi, y, process_term_number)

Perform the Error Reduction Ration algorithm.

Parameters

y : array-like of shape = n_samples The target data used in the identification process. psi : ndarray of floats The information matrix of the model. process_term_number : int Number of Process Terms defined by the user.

Returns

err : array-like of shape = number_of_model_elements The respective ERR calculated for each regressor. piv : array-like of shape = number_of_model_elements Contains the index to put the regressors in the correct order based on err values. psi_orthogonal : ndarray of floats The updated and orthogonal information matrix.

References
  • Manuscript: Orthogonal least squares methods and their application to non-linear system identification https://eprints.soton.ac.uk/251147/1/778742007_content.pdf
  • Manuscript (portuguese): Identificação de Sistemas não Lineares Utilizando Modelos NARMAX Polinomiais - Uma Revisão e Novos Resultados
Source code in sysidentpy/model_structure_selection/forward_regression_orthogonal_least_squares.py
def error_reduction_ratio(
    self, psi: np.ndarray, y: np.ndarray, process_term_number: int
) -> Tuple[np.ndarray, np.ndarray, np.ndarray]:
    """Perform the Error Reduction Ration algorithm.

    Parameters
    ----------
    y : array-like of shape = n_samples
        The target data used in the identification process.
    psi : ndarray of floats
        The information matrix of the model.
    process_term_number : int
        Number of Process Terms defined by the user.

    Returns
    -------
    err : array-like of shape = number_of_model_elements
        The respective ERR calculated for each regressor.
    piv : array-like of shape = number_of_model_elements
        Contains the index to put the regressors in the correct order
        based on err values.
    psi_orthogonal : ndarray of floats
        The updated and orthogonal information matrix.

    References
    ----------
    - Manuscript: Orthogonal least squares methods and their application
       to non-linear system identification
       https://eprints.soton.ac.uk/251147/1/778742007_content.pdf
    - Manuscript (portuguese): Identificação de Sistemas não Lineares
       Utilizando Modelos NARMAX Polinomiais - Uma Revisão
       e Novos Resultados

    """
    squared_y = np.dot(y[self.max_lag :].T, y[self.max_lag :])
    tmp_psi = psi.copy()
    y = y[self.max_lag :, 0].reshape(-1, 1)
    tmp_y = y.copy()
    dimension = tmp_psi.shape[1]
    piv = np.arange(dimension)
    tmp_err = np.zeros(dimension)
    err = np.zeros(dimension)

    for i in np.arange(0, dimension):
        for j in np.arange(i, dimension):
            # Add `eps` in the denominator to omit division by zero if
            # denominator is zero
            # To implement regularized regression (ridge regression), add
            # alpha to psi.T @ psi.   See S. Chen, Local regularization assisted
            # orthogonal least squares regression, Neurocomputing 69 (2006) 559-585.
            # The version implemented below uses the same regularization for every
            # feature, # What Chen refers to Uniform regularized orthogonal least
            # squares (UROLS) Set to tiny (self.eps) when you are not regularizing.
            # alpha = eps is the default.
            tmp_err[j] = (
                (np.dot(tmp_psi[i:, j].T, tmp_y[i:]) ** 2)
                / (
                    (np.dot(tmp_psi[i:, j].T, tmp_psi[i:, j]) + self.alpha)
                    * squared_y
                )
                + self.eps
            )[0, 0]

        piv_index = np.argmax(tmp_err[i:]) + i
        err[i] = tmp_err[piv_index]
        if i == process_term_number:
            break

        if (self.err_tol is not None) and (err.cumsum()[i] >= self.err_tol):
            self.n_terms = i + 1
            process_term_number = i + 1
            break

        tmp_psi[:, [piv_index, i]] = tmp_psi[:, [i, piv_index]]
        piv[[piv_index, i]] = piv[[i, piv_index]]
        v = Orthogonalization().house(tmp_psi[i:, i])
        row_result = Orthogonalization().rowhouse(tmp_psi[i:, i:], v)
        tmp_y[i:] = Orthogonalization().rowhouse(tmp_y[i:], v)
        tmp_psi[i:, i:] = np.copy(row_result)

    tmp_piv = piv[0:process_term_number]
    psi_orthogonal = psi[:, tmp_piv]
    return err, tmp_piv, psi_orthogonal

fit(*, X=None, y)

Fit polynomial NARMAX model.

This is an 'alpha' version of the 'fit' function which allows a friendly usage by the user. Given two arguments, X and y, fit training data.

Parameters

X : ndarray of floats The input data to be used in the training process. y : ndarray of floats The output data to be used in the training process.

Returns

model : ndarray of int The model code representation. piv : array-like of shape = number_of_model_elements Contains the index to put the regressors in the correct order based on err values. theta : array-like of shape = number_of_model_elements The estimated parameters of the model. err : array-like of shape = number_of_model_elements The respective ERR calculated for each regressor. info_values : array-like of shape = n_regressor Vector with values of akaike's information criterion for models with N terms (where N is the vector position + 1).

Source code in sysidentpy/model_structure_selection/forward_regression_orthogonal_least_squares.py
def fit(self, *, X: Optional[np.ndarray] = None, y: np.ndarray):
    """Fit polynomial NARMAX model.

    This is an 'alpha' version of the 'fit' function which allows
    a friendly usage by the user. Given two arguments, X and y, fit
    training data.

    Parameters
    ----------
    X : ndarray of floats
        The input data to be used in the training process.
    y : ndarray of floats
        The output data to be used in the training process.

    Returns
    -------
    model : ndarray of int
        The model code representation.
    piv : array-like of shape = number_of_model_elements
        Contains the index to put the regressors in the correct order
        based on err values.
    theta : array-like of shape = number_of_model_elements
        The estimated parameters of the model.
    err : array-like of shape = number_of_model_elements
        The respective ERR calculated for each regressor.
    info_values : array-like of shape = n_regressor
        Vector with values of akaike's information criterion
        for models with N terms (where N is the
        vector position + 1).

    """
    if y is None:
        raise ValueError("y cannot be None")

    self.max_lag = self._get_max_lag()
    lagged_data = self.build_matrix(X, y)

    reg_matrix = self.basis_function.fit(
        lagged_data,
        self.max_lag,
        self.ylag,
        self.xlag,
        self.model_type,
        predefined_regressors=None,
    )

    if X is not None:
        self.n_inputs = _num_features(X)
    else:
        self.n_inputs = 1  # just to create the regressor space base

    self.regressor_code = self.regressor_space(self.n_inputs)

    if self.order_selection is True:
        self.info_values = self.information_criterion(reg_matrix, y)

    if self.n_terms is None and self.order_selection is True:
        model_length = self.get_min_info_value(self.info_values)
        self.n_terms = model_length
    elif self.n_terms is None and self.order_selection is not True:
        raise ValueError(
            "If order_selection is False, you must define n_terms value."
        )
    else:
        model_length = self.n_terms

    (self.err, self.pivv, psi) = self.error_reduction_ratio(
        reg_matrix, y, model_length
    )

    tmp_piv = self.pivv[0:model_length]
    repetition = len(reg_matrix)
    if isinstance(self.basis_function, Polynomial):
        self.final_model = self.regressor_code[tmp_piv, :].copy()
    else:
        self.regressor_code = np.sort(
            np.tile(self.regressor_code[1:, :], (repetition, 1)),
            axis=0,
        )
        self.final_model = self.regressor_code[tmp_piv, :].copy()

    self.theta = self.estimator.optimize(psi, y[self.max_lag :, 0].reshape(-1, 1))
    if self.estimator.unbiased is True:
        self.theta = self.estimator.unbiased_estimator(
            psi,
            y[self.max_lag :, 0].reshape(-1, 1),
            self.theta,
            self.elag,
            self.max_lag,
            self.estimator,
            self.basis_function,
            self.estimator.uiter,
        )
    return self

fpe(n_theta, n_samples, e_var)

Compute the Final Error Prediction value.

Parameters

n_theta : int Number of parameters of the model. n_samples : int Number of samples given the maximum lag. e_var : float Variance of the residues

Returns

info_criteria_value : float The computed value given the information criteria selected by the user.

Source code in sysidentpy/model_structure_selection/forward_regression_orthogonal_least_squares.py
def fpe(self, n_theta: int, n_samples: int, e_var: float) -> float:
    """Compute the Final Error Prediction value.

    Parameters
    ----------
    n_theta : int
        Number of parameters of the model.
    n_samples : int
        Number of samples given the maximum lag.
    e_var : float
        Variance of the residues

    Returns
    -------
    info_criteria_value : float
        The computed value given the information criteria selected by the
        user.

    """
    model_factor = n_samples * np.log((n_samples + n_theta) / (n_samples - n_theta))
    e_factor = n_samples * np.log(e_var)
    info_criteria_value = e_factor + model_factor

    return info_criteria_value

get_info_criteria(info_criteria)

Get info criteria.

Source code in sysidentpy/model_structure_selection/forward_regression_orthogonal_least_squares.py
def get_info_criteria(self, info_criteria: str):
    """Get info criteria."""
    info_criteria_options = {
        "aic": self.aic,
        "aicc": self.aicc,
        "bic": self.bic,
        "fpe": self.fpe,
        "lilc": self.lilc,
    }
    return info_criteria_options.get(info_criteria)

get_min_info_value(info_values)

Find the index of the first increasing value in an array.

Parameters

info_values : array-like A sequence of numeric values to be analyzed.

Returns

int The index of the first element where the values start to increase monotonically. If no such element exists, the length of info_values is returned.

Notes
  • The function assumes that info_values is a 1-dimensional array-like structure.
  • The function uses np.diff to compute the difference between consecutive elements in the sequence.
  • The function checks if any differences are positive, indicating an increase in value.
Examples

class MyClass: ... def init(self, values): ... self.info_values = values ... def get_min_info_value(self): ... is_monotonique = np.diff(self.info_values) > 0 ... if any(is_monotonique): ... return np.where(is_monotonique)[0][] + 1 ... return len(self.info_values) instance = MyClass([3, 2, 1, 4, 5]) instance.get_min_info_value() 3

Source code in sysidentpy/model_structure_selection/forward_regression_orthogonal_least_squares.py
def get_min_info_value(self, info_values):
    """Find the index of the first increasing value in an array.

    Parameters
    ----------
    info_values : array-like
        A sequence of numeric values to be analyzed.

    Returns
    -------
    int
        The index of the first element where the values start to increase
        monotonically. If no such element exists, the length of
        `info_values` is returned.

    Notes
    -----
    - The function assumes that `info_values` is a 1-dimensional array-like
    structure.
    - The function uses `np.diff` to compute the difference between consecutive
    elements in the sequence.
    - The function checks if any differences are positive, indicating an increase
    in value.

    Examples
    --------
    >>> class MyClass:
    ...     def __init__(self, values):
    ...         self.info_values = values
    ...     def get_min_info_value(self):
    ...         is_monotonique = np.diff(self.info_values) > 0
    ...         if any(is_monotonique):
    ...             return np.where(is_monotonique)[0][0] + 1
    ...         return len(self.info_values)
    >>> instance = MyClass([3, 2, 1, 4, 5])
    >>> instance.get_min_info_value()
    3
    """
    is_monotonique = np.diff(info_values) > 0
    if any(is_monotonique):
        return np.where(is_monotonique)[0][0] + 1
    return len(info_values)

information_criterion(X, y)

Determine the model order.

This function uses a information criterion to determine the model size. 'Akaike'- Akaike's Information Criterion with critical value 2 (AIC) (default). 'Bayes' - Bayes Information Criterion (BIC). 'FPE' - Final Prediction Error (FPE). 'LILC' - Khundrin's law ofiterated logarithm criterion (LILC).

Parameters

y : array-like of shape = n_samples Target values of the system. X : array-like of shape = n_samples Input system values measured by the user.

Returns

output_vector : array-like of shape = n_regressor Vector with values of akaike's information criterion for models with N terms (where N is the vector position + 1).

Source code in sysidentpy/model_structure_selection/forward_regression_orthogonal_least_squares.py
def information_criterion(self, X: np.ndarray, y: np.ndarray) -> np.ndarray:
    """Determine the model order.

    This function uses a information criterion to determine the model size.
    'Akaike'-  Akaike's Information Criterion with
               critical value 2 (AIC) (default).
    'Bayes' -  Bayes Information Criterion (BIC).
    'FPE'   -  Final Prediction Error (FPE).
    'LILC'  -  Khundrin's law ofiterated logarithm criterion (LILC).

    Parameters
    ----------
    y : array-like of shape = n_samples
        Target values of the system.
    X : array-like of shape = n_samples
        Input system values measured by the user.

    Returns
    -------
    output_vector : array-like of shape = n_regressor
        Vector with values of akaike's information criterion
        for models with N terms (where N is the
        vector position + 1).

    """
    if self.n_info_values is not None and self.n_info_values > X.shape[1]:
        self.n_info_values = X.shape[1]
        warnings.warn(
            "n_info_values is greater than the maximum number of all"
            " regressors space considering the chosen y_lag, u_lag, and"
            f" non_degree. We set as {X.shape[1]}",
            stacklevel=2,
        )

    output_vector = np.zeros(self.n_info_values)
    output_vector[:] = np.nan

    n_samples = len(y) - self.max_lag

    for i in range(self.n_info_values):
        n_theta = i + 1
        regressor_matrix = self.error_reduction_ratio(X, y, n_theta)[2]

        tmp_theta = self.estimator.optimize(
            regressor_matrix, y[self.max_lag :, 0].reshape(-1, 1)
        )

        tmp_yhat = np.dot(regressor_matrix, tmp_theta)
        tmp_residual = y[self.max_lag :] - tmp_yhat
        e_var = np.var(tmp_residual, ddof=1)
        output_vector[i] = self.info_criteria_function(n_theta, n_samples, e_var)

    return output_vector

lilc(n_theta, n_samples, e_var)

Compute the Lilc information criteria value.

Parameters

n_theta : int Number of parameters of the model. n_samples : int Number of samples given the maximum lag. e_var : float Variance of the residues

Returns

info_criteria_value : float The computed value given the information criteria selected by the user.

Source code in sysidentpy/model_structure_selection/forward_regression_orthogonal_least_squares.py
def lilc(self, n_theta: int, n_samples: int, e_var: float) -> float:
    """Compute the Lilc information criteria value.

    Parameters
    ----------
    n_theta : int
        Number of parameters of the model.
    n_samples : int
        Number of samples given the maximum lag.
    e_var : float
        Variance of the residues

    Returns
    -------
    info_criteria_value : float
        The computed value given the information criteria selected by the
        user.

    """
    model_factor = 2 * n_theta * np.log(np.log(n_samples))
    e_factor = n_samples * np.log(e_var)
    info_criteria_value = e_factor + model_factor

    return info_criteria_value

predict(*, X=None, y, steps_ahead=None, forecast_horizon=None)

Return the predicted values given an input.

The predict function allows a friendly usage by the user. Given a previously trained model, predict values given a new set of data.

This method accept y values mainly for prediction n-steps ahead (to be implemented in the future)

Parameters

X : ndarray of floats The input data to be used in the prediction process. y : ndarray of floats The output data to be used in the prediction process. steps_ahead : int (default = None) The user can use free run simulation, one-step ahead prediction and n-step ahead prediction. forecast_horizon : int, default=None The number of predictions over the time.

Returns

yhat : ndarray of floats The predicted values of the model.

Source code in sysidentpy/model_structure_selection/forward_regression_orthogonal_least_squares.py
def predict(
    self,
    *,
    X: Optional[np.ndarray] = None,
    y: np.ndarray,
    steps_ahead: Optional[int] = None,
    forecast_horizon: Optional[int] = None,
) -> np.ndarray:
    """Return the predicted values given an input.

    The predict function allows a friendly usage by the user.
    Given a previously trained model, predict values given
    a new set of data.

    This method accept y values mainly for prediction n-steps ahead
    (to be implemented in the future)

    Parameters
    ----------
    X : ndarray of floats
        The input data to be used in the prediction process.
    y : ndarray of floats
        The output data to be used in the prediction process.
    steps_ahead : int (default = None)
        The user can use free run simulation, one-step ahead prediction
        and n-step ahead prediction.
    forecast_horizon : int, default=None
        The number of predictions over the time.

    Returns
    -------
    yhat : ndarray of floats
        The predicted values of the model.

    """
    if isinstance(self.basis_function, Polynomial):
        if steps_ahead is None:
            yhat = self._model_prediction(X, y, forecast_horizon=forecast_horizon)
            yhat = np.concatenate([y[: self.max_lag], yhat], axis=0)
            return yhat
        if steps_ahead == 1:
            yhat = self._one_step_ahead_prediction(X, y)
            yhat = np.concatenate([y[: self.max_lag], yhat], axis=0)
            return yhat

        _check_positive_int(steps_ahead, "steps_ahead")
        yhat = self._n_step_ahead_prediction(X, y, steps_ahead=steps_ahead)
        yhat = np.concatenate([y[: self.max_lag], yhat], axis=0)
        return yhat

    if steps_ahead is None:
        yhat = self._basis_function_predict(X, y, forecast_horizon)
        yhat = np.concatenate([y[: self.max_lag], yhat], axis=0)
        return yhat
    if steps_ahead == 1:
        yhat = self._one_step_ahead_prediction(X, y)
        yhat = np.concatenate([y[: self.max_lag], yhat], axis=0)
        return yhat

    yhat = self._basis_function_n_step_prediction(
        X, y, steps_ahead, forecast_horizon
    )
    yhat = np.concatenate([y[: self.max_lag], yhat], axis=0)
    return yhat