Ir para o conteúdo

Identificação de Sistema Eletromecânico - MetaMSS

Exemplo criado por Wilson Rocha Lacerda Junior

Procurando mais detalhes sobre modelos NARMAX? Para informações completas sobre modelos, métodos e uma ampla variedade de exemplos e benchmarks implementados no SysIdentPy, confira nosso livro: Nonlinear System Identification and Forecasting: Theory and Practice With SysIdentPy

Este livro fornece orientações detalhadas para apoiar seu trabalho com o SysIdentPy.

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from sysidentpy.model_structure_selection import MetaMSS, FROLS
from sysidentpy.metrics import root_relative_squared_error
from sysidentpy.basis_function import Polynomial
from sysidentpy.parameter_estimation import RecursiveLeastSquares
from sysidentpy.utils.display_results import results
from sysidentpy.utils.plotting import plot_residues_correlation, plot_results
from sysidentpy.residues.residues_correlation import (
    compute_residues_autocorrelation,
    compute_cross_correlation,
)
df1 = pd.read_csv("./datasets/x_cc.csv")
df2 = pd.read_csv("./datasets/y_cc.csv")

df2[5000:80000].plot(figsize=(10, 4))
<Axes: >

png

df1.iloc[::500].values.shape
(1000, 1)

Decimaremos os dados usando d=500 neste exemplo. Além disso, separamos os dados do MetaMSS para usar a mesma quantidade de amostras na validação de predição. Como o MetaMSS precisa de dados de treino e teste para otimizar os parâmetros do modelo, neste caso, usaremos 400 amostras para treinar em vez de 500 amostras usadas para os outros modelos.

# decimaremos os dados usando d=500 neste exemplo
x_train, x_test = np.split(df1.iloc[::500].values, 2)
y_train, y_test = np.split(df2.iloc[::500].values, 2)
basis_function = Polynomial(degree=2)
estimator = RecursiveLeastSquares()

model = MetaMSS(
    xlag=5,
    ylag=5,
    estimator=estimator,
    maxiter=5,
    n_agents=15,
    basis_function=basis_function,
    random_state=42,
)

model.fit(X=x_train, y=y_train)
<sysidentpy.model_structure_selection.meta_model_structure_selection.MetaMSS at 0x229e13e3150>
yhat = model.predict(X=x_test, y=y_test, steps_ahead=None)
rrse = root_relative_squared_error(y_test[model.max_lag :, :], yhat[model.max_lag :, :])
print(rrse)

r = pd.DataFrame(
    results(
        model.final_model,
        model.theta,
        model.err,
        model.n_terms,
        err_precision=8,
        dtype="sci",
    ),
    columns=["Regressores", "Parâmetros", "ERR"],
)
print(r)

plot_results(y=y_test, yhat=yhat, n=1000)
ee = compute_residues_autocorrelation(y_test, yhat)
plot_residues_correlation(data=ee, title="Resíduos", ylabel="$e^2$")
x1e = compute_cross_correlation(y_test, yhat, x_test)
plot_residues_correlation(data=x1e, title="Resíduos", ylabel="$x_1e$")
0.035919583498004094
        Regressores   Parâmetros             ERR
0                1  -6.1606E+02  0.00000000E+00
1           y(k-1)   1.3117E+00  0.00000000E+00
2           y(k-2)  -3.0579E-01  0.00000000E+00
3          x1(k-1)   5.7920E+02  0.00000000E+00
4          x1(k-3)  -1.8750E-01  0.00000000E+00
5    x1(k-1)y(k-1)  -1.7305E-01  0.00000000E+00
6    x1(k-2)y(k-1)  -1.1660E-01  0.00000000E+00
7    x1(k-1)y(k-2)   1.2182E-01  0.00000000E+00
8    x1(k-2)y(k-2)   3.4112E-02  0.00000000E+00
9    x1(k-1)y(k-3)  -4.8970E-02  0.00000000E+00
10   x1(k-1)y(k-4)   1.3846E-02  0.00000000E+00
11       x1(k-2)^2   1.0290E+02  0.00000000E+00
12  x1(k-3)x1(k-2)   8.6745E-01  0.00000000E+00
13  x1(k-4)x1(k-2)   3.4336E-01  0.00000000E+00
14  x1(k-5)x1(k-2)   2.7815E-01  0.00000000E+00
15       x1(k-3)^2  -9.3749E-01  0.00000000E+00
16  x1(k-4)x1(k-3)   6.1039E-01  0.00000000E+00
17  x1(k-5)x1(k-3)   3.9361E-02  0.00000000E+00
18       x1(k-4)^2  -4.6335E-01  0.00000000E+00
19  x1(k-5)x1(k-4)  -9.5668E-02  0.00000000E+00
20       x1(k-5)^2   3.6922E-01  0.00000000E+00

png

png

png

# Plotando a evolução dos agentes
plt.plot(model.best_by_iter)
model.best_by_iter[-1]
0.0017530517788608157

png

# Você tem acesso a todos os modelos testados
# model.tested_models
from sklearn.neighbors import KNeighborsRegressor
from sklearn.svm import SVC
from sklearn.tree import DecisionTreeRegressor
from sklearn.ensemble import RandomForestRegressor
from catboost import CatBoostRegressor
from sklearn.linear_model import ARDRegression
from sysidentpy.general_estimators import NARX

xlag = ylag = 5

estimators = [
    (
        "NARX_KNeighborsRegressor",
        NARX(
            base_estimator=KNeighborsRegressor(),
            xlag=xlag,
            ylag=ylag,
            basis_function=basis_function,
        ),
    ),
    (
        "NARX_DecisionTreeRegressor",
        NARX(
            base_estimator=DecisionTreeRegressor(),
            xlag=xlag,
            ylag=ylag,
            basis_function=basis_function,
        ),
    ),
    (
        "NARX_RandomForestRegressor",
        NARX(
            base_estimator=RandomForestRegressor(n_estimators=200),
            xlag=xlag,
            ylag=ylag,
            basis_function=basis_function,
        ),
    ),
    (
        "NARX_Catboost",
        NARX(
            base_estimator=CatBoostRegressor(
                iterations=800, learning_rate=0.1, depth=8
            ),
            xlag=xlag,
            ylag=ylag,
            basis_function=basis_function,
            fit_params={"verbose": False},
        ),
    ),
    (
        "NARX_ARD",
        NARX(
            base_estimator=ARDRegression(),
            xlag=xlag,
            ylag=ylag,
            basis_function=basis_function,
        ),
    ),
    (
        "FROLS-Polynomial_NARX",
        FROLS(
            order_selection=True,
            n_info_values=50,
            ylag=ylag,
            xlag=xlag,
            basis_function=basis_function,
            info_criteria="bic",
            err_tol=None,
        ),
    ),
    (
        "MetaMSS",
        MetaMSS(
            norm=-2,
            xlag=xlag,
            ylag=ylag,
            estimator=estimator,
            maxiter=5,
            n_agents=15,
            loss_func="metamss_loss",
            basis_function=basis_function,
            random_state=42,
        ),
    ),
]


all_results = {}
for model_name, modelo in estimators:
    all_results["%s" % model_name] = []
    modelo.fit(X=x_train, y=y_train)
    yhat = modelo.predict(X=x_test, y=y_test)
    if model_name in ["FROLS-Polynomial_NARX", "MetaMSS"]:
        result = root_relative_squared_error(
            y_test[modelo.max_lag :], yhat[modelo.max_lag :]
        )
    else:
        result = root_relative_squared_error(y_test, yhat)
    all_results["%s" % model_name].append(result)
    print(model_name, "%.3f" % np.mean(result))
NARX_KNeighborsRegressor 1.158
NARX_DecisionTreeRegressor 0.203
NARX_RandomForestRegressor 0.146
NARX_Catboost 0.120
NARX_ARD 0.083
FROLS-Polynomial_NARX 0.057
MetaMSS 0.036
for model_name, metric in sorted(
    all_results.items(), key=lambda x: np.mean(x[1]), reverse=False
):
    print(model_name, np.mean(metric))
MetaMSS 0.035919583498004094
FROLS-Polynomial_NARX 0.05729765719062527
NARX_ARD 0.08265856190495872
NARX_Catboost 0.12034851661643597
NARX_RandomForestRegressor 0.14557973585496042
NARX_DecisionTreeRegressor 0.203057724881072
NARX_KNeighborsRegressor 1.157787546845798